磁流体力学(magnetohydrodynamics,MHD)[1] 是研究等离子体和磁场相互作用的物理学分支,基本思想是在运动的导电流体中,磁场能感应出电流. 它能解释等离子体中的大多数现象,广泛应用于离子体物理学的研究. 磁流体力学的基本方程是流体力学中的 Navier-Stokes 方程和电动力学中的 Maxwell 方程组.磁流体力学由瑞典物理学家 Hannes Alfvén 创立,并且因此获得 1970 年的诺贝尔物理学奖. 本文考虑不可压三维 MHD 方程组
这里,${\bf B}({\bf x},t)$ 为磁场,${\bf u}({\bf x},t)$ 为速度场, $p({\bf x},t)$ 为压强,$\mu\geq0$ 为流体的粘性系数,$\nu\geq0$ 为电阻率. 为简化计算,设常数 $\mu$ 和 $\nu$ 都为 1.
本文得到如下结论.
定理 1.1 $(u^{\theta}=0,B^{r}=B^{z}=0)$ 设 $0<\delta<1$ 是一个给定可以任意小的数,
其中 ${\cal B}_{0}(r,z)=r{\cal B}_{1}(r,z),W_{0}(r,z)=rW_{1}(r,z)$, ${\cal B}_{0},{\cal B}_{1}\in L^{2p}({\Bbb R}^{2}\times [0,1])$, $W_{0},W_{1}\in L^{2q}({\Bbb R}^{2}\times [0,1])$,$p=2q,q>\frac{1}{\delta}$. 若初始场 ${\bf u}_{0},{\bf B}_{0}\in L^{2}({\Bbb R}^{2}\times [0,1])$, $B^{\theta},\omega^{\theta}$ 和 $\psi^{\theta}$ 的初始条件在 $z$ 轴上是周期为 1 的周期函数且为奇函数,则存在 $\varepsilon_{0}({\cal B}_{0},W_{0},\delta) >0$, 使得对于所有的 $0<\varepsilon\leq\varepsilon_{0}$,三维轴对称 MHD 方程组有一个唯一的整体正则解.
注1.1 这里如果我们选择 $\varepsilon$ 很小,则关于轴对称不可压 MHD 方程组的初值不会小. 因此,经典的关于小初值的正则性分析方法是不适用于各向异性的初始条件的. 此外, 如果我们选择如下的初始条件
则
$$ B_{1}(r,z,0)=\varepsilon ^{\delta+1}{\cal B}_{1}(\varepsilon^{2}r,z),\qquad \omega_{1}(r,z,0)=\varepsilon ^{\delta+1}W_{1}(\varepsilon^{2}r,z), $$
$$ \| f_{0}\| _{L^{2}(\Omega)}^{\frac{1}{p}} =\varepsilon ^{\delta+1-\frac{2}{p}}\| {\cal B}_{1}\| _{L^{2p}(\Omega)},\quad\| g_{0}\| _{L^{2}(\Omega)}^{\frac{1}{q}} =\varepsilon ^{\delta+1-\frac{2}{q}}\| W_{1}\| _{L^{2q}(\Omega)}, $$
这里 ${\cal B}_{1}\in L^{2p}(\Omega),W_{1}\in L^{2q}(\Omega)$ 独立于 $\varepsilon$. 定理 $1.1$ 同样成立.
定理 1.2 $(B^{r}=B^{z}=0)$ 设 $0<\delta<1$ 是一个给定可以任意小的数,
其中 $U_{0}(r,z)=rU_{1}(r,z),{\cal B}_{0}(r,z)=r{\cal B}_{1}(r,z), W_{0}(r,z)=rW_{1}(r,z)$,$U_{0},U_{1},{\cal B}_{0}, {\cal B}_{1}\in L^{2p}({\Bbb R}^{2}\times [0,1])$, $W_{0},W_{1}\in L^{2q}({\Bbb R}^{2}\times [0,1])$,$p=2q,q>\frac{1}{\delta}$. 若初始场 ${\bf u}_{0},{\bf B}_{0}\in L^{2}({\Bbb R}^{2}\times [0,1])$, $u^{\theta},B^{\theta},\omega^{\theta}$ 和 $\psi^{\theta}$ 的初始条件在 $z$ 轴上是周期为 1 的周期函数且为奇函数,则存在 $\varepsilon_{0}(U_{0},{\cal B}_{0}, W_{0},\delta) >0$,使得对于所有的 $0<\varepsilon\leq\varepsilon_{0}$, 三维轴对称 MHD 方程组有唯一整体正则解.
注 1.2 类似定理 1.1,如果我们令
$$ u_{1}(r,z,0)=\varepsilon ^{\delta}U_{1}(\varepsilon r,z),\quad B_{1}(r,z,0)=\varepsilon ^{\delta}{\cal B}_{1}(\varepsilon r,z),\quad \omega_{1}(r,z,0)=\varepsilon ^{\delta}W_{1}(\varepsilon r,z), $$
$$ \| h_{0}\| _{L^{2}(\Omega)}^{\frac{1}{p}} =\varepsilon ^{\delta-\frac{1}{p}}\| U_{1}\| _{L^{2p}(\Omega)},\ \| f_{0}\| _{L^{2}(\Omega)}^{\frac{1}{p}} =\varepsilon ^{\delta-\frac{1}{p}}\| {\cal B}_{1}\| _{L^{2p}(\Omega)},\ \| g_{0}\| _{L^{2}(\Omega)}^{\frac{1}{q}} =\varepsilon ^{\delta-\frac{1}{q}}\| W_{1}\| _{L^{2q}(\Omega)}. $$
如果
$$ (\frac{q}{p}C_{q})^{\frac{1}{2q}}\varepsilon^{2\delta-\frac{1}{q}}\| U_{1}\| _{L^{2p}(\Omega)}^{2}+\varepsilon^{\delta-\frac{1}{q}}\| W_{1}\| _{L^{2q}(\Omega)}^{2} +(\frac{q}{p}C_{q})^{\frac{1}{2q}}\varepsilon^{2\delta-\frac{1}{q}}\| {\cal B}_{1}\| _{L^{2p}(\Omega)}^{2}\leq\frac{7(2p-1)}{8p^{2}}, $$
这里 $U_{1},{\cal B}_{1}\in L^{2p}(\Omega),W_{1}\in L^{2q}(\Omega)$ 独立于 $\varepsilon$,则定理 1.2 同样成立.
本文部分借鉴了文献[2]中关于轴对称的 Navier-Stokes 方程组的思想. 下面介绍关于不可压的 MHD 方程组近期的研究成果. 在笛卡儿坐标系下,有许多研究结果,然而在柱面坐标系下的研究结果很少. 在笛卡儿坐标系下,文献[3]推导出弱解的 Hausdorff 维估计及其爆破估计的部分正则性. 文献[4] 证明了如果速度场 $u\in L^{\frac{2}{1-\gamma}}(O,T,\dot{X}_{\gamma}(R^{3})), \gamma\in[0,1]$ 或度场的梯度 $\nabla u\in L^{\frac{2}{2-\gamma}}(O,T,\dot{X}_{\gamma}(R^{3})),\gamma\in[0,1]$, 则解在 $[0,T]$上是光滑的. 文献[5, 6] 给出了两类三维不可压的 MHD 方程组的正则性条件.文献[7]证明了如果初值满足 $\| u_{0}\| _{H^{1}}+\| b_{0}\| _{H^{1}}\leq \varepsilon$,这里 $\varepsilon$ 是任意小的正数,则带部分耗散和磁扩散混合的三维MHD 方程有整体光滑解. 文献[8]证明了如果耗散项为 $-\nu(-\Delta)^{\alpha}u$ 和 $-\kappa(-\Delta)^{\beta}b$, 则在这三种情况下 $\alpha \geq \frac{1}{2},\beta\geq1$; $0\leq\alpha\leq \frac{1}{2},2\alpha+\beta>2$; $\alpha\geq2,\beta =0$, 其光滑解是整体的. 在柱面坐标系下的研究成果如 文献[9] 证明了三维的理想的 MHD 方程组关于一维非平凡磁场 ($u^{\theta}=B^{r}=B^{z}=0$) 的轴对称解的整体正则性. 在定理 1.1 中, 本文考虑了在各向异性初值条件下的这种情况.
以下分为两部分讨论,首先给出轴对称不可压 MHD 方程组 (2.11)-(2.16). 其次,分别给出两类各向异性大初值 (1) $B^{\theta}(r,z,0)= \frac{1}{\varepsilon ^{2-\delta}}{\cal B}_{0}(\varepsilon ^{2}r,z),$ $\omega^{\theta}(r,z,0)=\frac{1}{\varepsilon ^{2-\delta}}W_{0}(\varepsilon ^{2}r,z)$, (2) $u^{\theta}(r,z,0)=U_{0}(\varepsilon ^{2\delta}r,z),$ $B^{\theta}(r,z,0)={\cal B}_{0}(\varepsilon ^{2\delta}r,z),$ $ \omega^{\theta}(r,z,0)=W_{0}(\varepsilon ^{2\delta}r,z)$ 情况下的 MHD 方程组的两类特解 (1) $u^{\theta}=0,B^{r}=B^{z}=0$, (2) $B^{r}=B^{z}=0$ 的整体正则性的证明.
设三维轴对称的 MHD 方程组 (1.1)-(1.4) 的一个解 $({\bf u},{\bf B},p)$ 具有形式
这里
$${\bf e}_{r}=(\frac{x}{r},\frac{y}{r},0),\qquad {\bf e}_{\theta}= (-\frac{y}{r},\frac{x}{r},0),\qquad {\bf e}_{z}=(0,0,1)$$
为 3 个分别沿着径向方向,角方向和 z 轴方向的相互正交单位向量, $r=\sqrt{x^{2}+y^{2}}$. 则 方程组(1.1)-(1.4) 在柱坐标系下表示为
这里 $\nabla ^{2}=\partial ^{2}_{r}+\frac{1}{r}\partial r+\partial ^{2}_{z}$. 注意到一旦初始条件给定, 方程组 (2.2)-(2.4) 就完全决定了轴对称不可压 MHD 方程组. 类似,旋度场 $\omega$ 和流密度 ${\bf J}$ 表示为
其中
此外,本文引入流函数 $\psi$ 和磁流函数 $\Phi$. $u^{\theta},\omega^{\theta},\psi^{\theta},B^{\theta},j^{\theta}$ 和 $\phi^{\theta}$ 分别被称为速度场 ${\bf u}$,旋度场 $\omega$, 流函数 $\psi$, 磁场 ${\bf B}$,流密度${\bf J}$ 和磁流函数$\Phi$ 的旋涡分 量. 因此,$u^{r},u^{z},B^{r}$ 和 $ B^{z}$ 可根据 $\psi^{\theta}$ 和 $\phi^{\theta}$ 被表示为
因此,我们得到
类似于 Navier-Stokes 方程组,对于三维轴对称 MHD 方程组在 $r=0$ 时都满足如下相容性条件
$$ u^{\theta}(0,z,t)=\omega^{\theta}(0,z,t)=\psi^{\theta}(0,z,t)=0, $$
$$ B^{\theta}(0,z,t)=j^{\theta}(0,z,t)=\phi^{\theta}(0,z,t)=0. $$
因此,重写 $u^{\theta},\omega^{\theta},\psi^{\theta},B^{\theta},j^{\theta}$ 和 $\phi^{\theta}$ 如下
则可推导出关于 $u_{1}(r,z,t),\omega_{1}(r,z,t),\psi_{1}(r,z,t),B_{1}(r,z,t),$ $ j_{1}(r,z,t)$ 和 $\phi_{1}(r,z,t)$ 的与方程组 (2.8)-(2.9) 等价的方程组
这里 $u^{r}$ 和 $u^{z}$ 同样被重新表示为
注意到不可压以及磁场散度约束条件 (2.4) 仍成立并可由 (2.17)式 推导出来. 下面,我们回顾 $A_{p}$ 类的定义.
定义 2.1 [10] ($A_{p}$ 类) 设局部可积函数 $\omega(x)$ 对于所有在 ${\Bbb R}^{n}$ 内的球 B 满足 $A_{p}$ 不等式
其中,$p'$ 与 $p$ 对偶,即 $\frac{1}{p}+\frac{1}{p'}=1 $ $(1<p<\infty)$. 若存在一个小常数 A 对于 (2.18)式成立,则称 $A_{p}$ 是关于 $\omega({\bf x})$ 有界的,并记为$A_{p}(\omega({\bf x}))$.
引理 2.1 [2] 设 $\omega({\bf x})=\omega({\bf r})=\frac{1}{r^{2}}$ 在 ${\Bbb R}^{3}$ 内属于 $A_{p}$ 类 ,存在一个正常数 $C>0$ 使得
引理 2.2 设 $\omega_{1},\psi_{1},j_{1}, \phi_{1} \in L^{p}(R^{2}\times\Pi_{1})$,$1<p<\infty$,$\psi_{1}$ 和 $\phi_{1}$ 为(2.12)和(2.16) 的解,且在 $z$ 方向具有周期为 1 的周期性边界条件,则
证 证明过程类似于文献 [2,引理 2].
本节考虑两类 MHD 方程组的特解: (1) $u^{\theta}=0,B^{r}=B^{z}=0$,(2) $B^{r}=B^{z}=0$, 给出定理 1.1 和定理 1.2 的证明.
(1) $ u^{\theta}=0,B^{r}=B^{z}=0$
本节考虑一族特解
易知,若 $u^{\theta},B^{r},B^{z}$ 的初值为零,则恒为零. 因此,(2.11)-(2.16)式被简化为
定理 1.1 的证明 记 $\Omega={\Bbb R}^{2}\times[0,1]$,定义 $f=|B_{1}|^{p},g=|W_{1}|^{q}$, $p=2q$. (3.2) 式乘以 $|B_{1}|^{2p-2}B_{1}$ 且在 $\Omega$ 上积分,得
由分部积分及 (2.4)式,得
$$\int_{\Omega}|B_{1}|^{2p-2}B_{1}[u^{r}(B_{1})_{r}+u^{z}(B_{1})_{z}] r{\rm d}r{\rm d}z=0.$$
\begin{eqnarray*} I_{1}&=&\int_{\Omega}|B_{1}|^{2p-1} r{\rm d}r{\rm d}B_{1z} =-(2p-1)\int_{\Omega}|B_{1}|^{2p-2}(|B_{1}|_{z})^{2} r{\rm d}r{\rm d}z\\ &=&-\frac{2p-1}{p^{2}}\int_{\Omega}(f_{z})^{2} r{\rm d}r{\rm d}z. \end{eqnarray*}
\begin{eqnarray*} I_{2}&=&\int_{\Omega}|B_{1}|^{2p-1}{\rm d}rB_{1r}{\rm d}z =-(2p-1)\int_{\Omega}|B_{1}|^{2p-2}(|B_{1}|_{r})^{2} r{\rm d}r{\rm d}z \\ &=&-\frac{2p-1}{p^{2}}\int_{\Omega}(f_{r})^{2} r{\rm d}r{\rm d}z. \end{eqnarray*}
\begin{eqnarray*} I_{3}&=&\frac{1}{p}\int_{\Omega}(|B_{1}|^{2p})_{r}{\rm d}r{\rm d}z =\frac{1}{p}\int_{0}^{1}\int_{0}^{\infty}d|B_{1}|^{2p}{\rm d}z\\ &=&-\frac{1}{p}\int_{0}^{1}|B_{1}|^{2p}(0,z,t){\rm d}z=-\frac{1}{p}\int_{0}^{1}f^{2}(0,z,t){\rm d}z. \end{eqnarray*}
因此,得到
类似地,(3.3)式乘以 $|\omega_{1}|^{2q-2}\omega_{1}$ 且在 $\Omega$ 上积分,得
这里同样由分部积分和(2.4)式,得
$$\int_{\Omega}|\omega_{1}|^{2q-2}\omega_{1} [u^{r}(\omega_{1})_{r}+u^{z}(\omega_{1})_{z}] r{\rm d}r{\rm d}z=0.$$
关于 $J_{1}$,我们利用 Hölder 不等式,Young's 不等式及 $ p=2q$有
\begin{eqnarray*} J_{1}&\leq &(2q-1)\int_{\Omega}f^{\frac{2}{p}}|\omega_{1}|^{2q-2}|\omega _{1}|_{z} r{\rm d}r{\rm d}z\\ &=&\bigg(2-\frac{1}{q}\bigg)\int_{\Omega}f^{\frac{2}{p}}g^{1-\frac{1}{q}}|g_{z}| r{\rm d}r{\rm d}z\\ &\leq&\bigg(2-\frac{1}{q}\bigg) \bigg(\int _{\Omega}f^{\frac{4}{p}}g^{2(1-\frac{1}{q})} r{\rm d}r{\rm d}z\bigg)^{\frac{1}{2}}\| g_{z}\| _{L^{2}(\Omega)} \\ &\leq&\bigg(2-\frac{1}{q}\bigg) \Big(\| f\| _{L^{2}(\Omega)}^{\frac{2}{p}}\| g\| _{L^{2}(\Omega)}^{1-\frac{2}{p}}\Big)\| g_{z}\| _{L^{2}(\Omega)}\\ &\leq &C_{q}\| f\| _{L^{2}(\Omega)}^{\frac{4}{p}}\| g\| _{L^{2}(\Omega)}^{2(1-\frac{2}{p})}+\frac{2q-1}{4q^{2}}\| \nabla g\| _{L^{2}(\Omega)}^{2}\\ &\leq &C_{q}\frac{2p-1}{2p^{2}}\| f\| _{L^{2}(\Omega)}^{2}+\frac{2q-1}{4q^{2}}\| g\| _{L^{2}(\Omega)}^{2}+\frac{2q-1}{4q^{2}}\| \nabla g\| _{L^{2}(\Omega)}^{2}. \end{eqnarray*}
与 $I_{1}-I_{3}$ 类似,得
$$ J_{1}=\int_{\Omega}|\omega_{1}|^{2q-1} r{\rm d}r{\rm d}\omega_{1z}=-(2q-1)\int_{\Omega}|\omega_{1}|^{2q-2}(|\omega_{1}|_{z})^{2} r{\rm d}r{\rm d}z=-\frac{2q-1}{q^{2}}\int_{\Omega}(g_{z})^{2} r{\rm d}r{\rm d}z. $$
$$ J_{3}=\int_{\Omega}|\omega_{1}|^{2q-1}{\rm d}r\omega_{1r}{\rm d}z=-(2q-1)\int_{\Omega}|\omega_{1}|^{2q-2}(|B_{1}|_{r})^{2} r{\rm d}r{\rm d}z=-\frac{2q-1}{q^{2}}\int_{\Omega}(g_{r})^{2} r{\rm d}r{\rm d}z. $$
$$J_{4}=\frac{1}{q}\int_{\Omega}(|\omega_{1}|^{2q})_{r} {\rm d}r{\rm d}z=-\frac{1}{q}\int_{0}^{1}|\omega_{1}|^{2q}(0,z,t){\rm d}z=-\frac{1}{q}\int_{0}^{1}g^{2}(0,z,t){\rm d}z. $$
这里我们使用沿着 $z$ 方向的 Poincare 不等式
$$\| f\| _{L^{2}}\leq \| f_{z}\| _{L^{2}},\| g\| _{L^{2}}\leq \| g_{z}\| _{L^{2}}. $$
(3.6)式乘以 $C_{q}$ 后与 (3.8) 式相加,得到
利用 Gronwall 不等式,得
根据初值条件(1.5),有
其中 ${\cal B}_{1}\in L^{2p}(\Omega),W_{1}\in L^{2q}(\Omega)$ 独立于 $\varepsilon$. 此外,我们有
类似地,得到
将(3.10),(3.12) 和 (3.13) 式相加,得到 $\| B_{1}\| _{L^{2p}(\Omega)}$, $\| \omega_{1}\| _{L^{2q}(\Omega)}$ 整体有界以及 $\| B^{\theta}\| _{L^{2p}(\Omega)},$ $\| \omega^{\theta}\| _{L^{2q}(\Omega)}$ 整体有界. 定理 1.1 证毕.
(2) $ B^{r}=B^{z}=0$
易知,若 $B^{r},B^{z}$ 的初值为零,则恒为零. 因此,(2.11)-(2.16)式 被简化为
定理 1.2 的证明 记 $\Omega={\Bbb R}^{2}\times[0,1]$,且定义 $h=|u_{1}|^{p}, f=|B_{1}|^{p},g=|W_{1}|^{q}$,$p=2q$. (3.15) 式乘以 $|u_{1}|^{2p-2}u_{1}$ 且在 $\Omega$ 上积分,得
这里由分部积分及(2.4)式,得
$$\int_{\Omega}|u_{1}|^{2p-2}u_{1}[u^{r}(u_{1})_{r}+u^{z}(u_{1})_{z}] r{\rm d}r{\rm d}z=0. $$
关于$K_{1}$,利用沿 $z$ 方向的 Poincare 不等式
$$\| \psi_{1z}\| _{L^{2q}(\Omega)}\leq\| \psi_{1zz}\| _{L^{2q}(\Omega)}, $$
引理 2.2 和 Hölder 不等式,有
$$ K_{1}\leq\| \psi_{1z}\| _{L^{2q}(\Omega)}\| h^{2}\| _{L^{\frac{2q}{2q-1}}(\Omega)}=\| g\| _{L^{2}(\Omega)}^{\frac{1}{q}}\| h\| _{L^{\frac{4q}{2q-1}}(\Omega)}^{2}\leq C_{p}\| g\| _{L^{2}(\Omega)}^{\frac{1}{q}}\| h\| _{L^{2}(\Omega)}^{2-\frac{3}{2q}}\| \nabla h\| _{L^{2}(\Omega)}^{\frac{3}{2q}}. $$
类似于 $I_{1}-I_{3}$,估计 $K_{2}$ 为
$$ K_{2}\leq-\frac{(2p-1)}{p^{2}}\| \nabla h\| _{L^{2}(\Omega)}^{2}-\frac{1}{p}\int_{0}^{1}h^{2}(0,z,t){\rm d}z\leq-\frac{(2p-1)}{p^{2}}\| \nabla h\| _{L^{2}(\Omega)}^{2}. $$
这里利用了沿$z$ 方向的 Poincare 不等式
$$\| h\| _{L^{2}}\leq \| h_{z}\| _{L^{2}}. $$
类似的,(3.3)式乘以 $|\omega_{1}|^{2q-2}\omega_{1}$ 且在 $\Omega$ 上积分,得
这里由分部积分及 (2.4)式,得
$$\int_{\Omega}|\omega_{1}|^{2q-2}\omega_{1}[u^{r}(\omega_{1})_{r}+u^{z}(\omega_{1})_{z}] r{\rm d}r{\rm d}z=0. $$
\begin{eqnarray*} L_{1}&\leq &(2q-1)\int_{\Omega}h^{\frac{2}{p}}|\omega_{1}|^{2q-2}|\omega _{1}|_{z} r{\rm d}r{\rm d}z\\ &=&\bigg(2-\frac{1}{q}\bigg)\int_{\Omega}h^{\frac{2}{p}}|\omega_{1}|^{q-1}(g|\omega_{1}|^{q-1}|\omega _{1z}|) r{\rm d}r{\rm d}z\\ &\leq&\bigg(2-\frac{1}{q}\bigg)\bigg (\int _{\Omega}h^{\frac{4}{p}}g^{2(1-\frac{1}{q})} r{\rm d}r{\rm d}z\bigg)^{\frac{1}{2}}\| g_{z}\| _{L^{2}(\Omega)} \\ &\leq&\bigg(2-\frac{1}{q}\bigg) \Big(\| h\| _{L^{2}(\Omega)}^{\frac{2}{p}}\| g\| _{L^{2}(\Omega)}^{1-\frac{2}{p}}\Big)\| g_{z}\| _{L^{2}(\Omega)}\\ &\leq &C_{q}\| h\| _{L^{2}(\Omega)}^{\frac{4}{p}}\| g\| _{L^{2}(\Omega)}^{2(1-\frac{2}{p})}+\frac{2q-1}{8q^{2}}\| \nabla g\| _{L^{2}(\Omega)}^{2}\\ &\leq &C_{q}\frac{2p-1}{8p^{2}}\| h\| _{L^{2}(\Omega)}^{2}+\frac{2q-1}{8q^{2}}\| g\| _{L^{2}(\Omega)}^{2}+\frac{2q-1}{8q^{2}}\| \nabla g\| _{L^{2}(\Omega)}^{2}, \end{eqnarray*}
这里我们利用了分部积分,Hölder 不等式,Young's 不等式和 $p=2q$. 类似于 $ J_{1}-J_{4}$,得
$$ L_{2}\leq C_{q}\frac{2p-1}{8p^{2}}\| f\| _{L^{2}(\Omega)}^{2}+\frac{2q-1}{8q^{2}}\| g\| _{L^{2}(\Omega)}^{2}+\frac{2q-1}{8q^{2}}\| \nabla g\| _{L^{2}(\Omega)}^{2}. $$
$$ L_{3}\leq-\frac{(2q-1)}{q^{2}}\| \nabla g\| _{L^{2}(\Omega)}^{2}-\frac{1}{q}\int_{0}^{1}g^{2}(0,z,t){\rm d}z\leq-\frac{(2q-1)}{q^{2}}\| \nabla g\| _{L^{2}(\Omega)}^{2}. $$
因此,我们有
用 (3.2) 式乘以 $|B_{1}|^{2p-2}B_{1}$ 且在 $\Omega$ 上积分,得
将 (3.20),(3.21) 和 (3.22)式相加,有
若要 (3.24)式 的右边为负,只需
如果 (3.25) 式成立,有
$$ \frac{\rm d}{{\rm d}t} \bigg(\frac{C_{q}}{2p}\int_{\Omega}h^{2} r{\rm d}r{\rm d}z+\frac{1}{2q} \int_{\Omega}g^{2} r{\rm d}r{\rm d}z+\frac{C_{q}}{2p}\int_{\Omega}f^{2} r{\rm d}r{\rm d}z\bigg)\leq0. $$
由 Gronwall 不等式,得
根据初值 条件(1.6),有
$$u_{1}(r,z,0)=\varepsilon ^{2\delta}U_{1}(\varepsilon^{2\delta} r,z),\quad \omega_{1}(r,z,0)=\varepsilon ^{2\delta}W_{1}(\varepsilon^{2\delta} r,z),\quad B_{1}(r,z,0)=\varepsilon ^{2\delta}{\cal B}_{1}(\varepsilon^{2\delta} r,z),$$
且
$$ \| h_{0}\| _{L^{2}(\Omega)}^{\frac{1}{p}} =\varepsilon ^{2\delta(1-\frac{1}{p})}\| U_{1}\| _{L^{2p}(\Omega)}, \quad \| g_{0}\| _{L^{2}(\Omega)}^{\frac{1}{q}} =\varepsilon ^{2\delta(1-\frac{1}{q})}\| W_{1}\| _{L^{2q}(\Omega)}, $$
$$ \| f_{0}\| _{L^{2}(\Omega)}^{\frac{1}{p}} =\varepsilon ^{2\delta(1-\frac{1}{p})}\| {\cal B}_{1}\| _{L^{2p}(\Omega)}, $$
这里 $U_{1},{\cal B}_{1}\in L^{2p}(\Omega),W_{1}\in L^{2q}(\Omega)$ 独立于 $\varepsilon$. 根据 (3.26)式,有
\begin{eqnarray*} \| g\| _{L^{2}(\Omega)}^{\frac{1}{q}} & \leq& (\frac{q}{p}C_{q})^{\frac{1}{2q}} \varepsilon^{4\delta (1-\frac{1}{q})}\| U_{1}\| _{L^{2p}(\Omega)}^{2}+ \varepsilon^{2\delta (1-\frac{1}{q})}\| W_{1}\| _{L^{2q}(\Omega)}^{2} \\ &&+(\frac{q}{p}C_{q})^{\frac{1}{2q}}\varepsilon^{4\delta (1-\frac{1}{q})}\| {\cal B}_{1}\| _{L^{2p}(\Omega)}^{2}. \end{eqnarray*}
因此,如果 $\varepsilon$ 充分小,使
\begin{eqnarray*} &&(\frac{q}{p}C_{q})^{\frac{1}{2q}}\varepsilon^{4\delta (1-\frac{1}{q})}\| U_{1}\| _{L^{2p}(\Omega)}^{2}+\varepsilon^{2\delta (1-\frac{1}{q})}\| W_{1}\| _{L^{2q}(\Omega)}^{2} \\ &&+(\frac{q}{p}C_{q})^{\frac{1}{2q}}\varepsilon^{4\delta (1-\frac{1}{q})}\| {\cal B}_{1}\| _{L^{2p}(\Omega)}^{2}\leq\frac{7(2p-1)}{8p^{2}}, \end{eqnarray*}
其中 $\delta>\frac{1}{q}$. 则 $\| u_{1}\| _{L^{2p}(\Omega)}$, $\| B_{1}\| _{L^{2p}(\Omega)}$,$\| \omega_{1}\| _{L^{2q}(\Omega)}$ 整体有界和 $\| U^{\theta}\| _{L^{2p}(\Omega)},$ $\| B^{\theta}\| _{L^{2p}(\Omega)},$ $ \| \omega^{\theta}\| _{L^{2q}(\Omega)}$ 整体有界. 定理 1.2 证毕.