设${\Bbb D}$为复平面${\Bbb C}$上的单位圆盘. $H({\Bbb D})$表示${\Bbb D}$上解析函数全体组成的函数空间. $\alpha$-Bloch空间 ${\cal B}^{\alpha}$和小$\alpha$-Bloch空间($0<\alpha<\infty$)分别定义为 $$ {\cal B}^{\alpha}=\Big\{f\in H({\Bbb D}): \sup\limits_{z\in{\Bbb D}}(1-|z|^{2})^{\alpha}|f'(z)|<\infty\Big\}, $$ $$ {\cal B}_{0}^{\alpha}=\Big\{f\in H({\Bbb D}):\lim\limits_{|z|\rightarrow1}(1-|z|^{2})^{\alpha}|f'(z)|=0\Big\}. $$ 易知在范数$\| f\| _{{\cal B}^{\alpha}}=|f(0)|+\sup\limits_{z\in{\Bbb D}}(1-|z|^{2})^{\alpha}|f'(z)|$ 下,${\cal B}^{\alpha}$成为Banach空间,${\cal B}_{0}^{\alpha}$是${\cal B}^{\alpha}$ 的闭子空间,$\alpha=1$时,${\cal B}^{1}={\cal B}$就是经典的 Bloch空间(见文献[18]). 设$\mu$是$[0,1)$上的一个正的连续函数,若存在正数$s$,$t$,$0<s<t$, 和$\delta\in[0,1)$使得$\mu$满足 $$ \frac{\mu}{(1-r)^{s}} \mbox{ 在$[\delta,1)$上单调下降,} \lim\limits_{r\rightarrow1}\frac{\mu}{(1-r)^{s}}=0, $$ $$ \frac{\mu}{(1-r)^{t}} \mbox{ 在$[\delta,1)$上单调上升,} \lim\limits_{r\rightarrow1}\frac{\mu}{(1-r)^{t}}=\infty, $$ 则$\mu$称为正规权函数(见文献[11]). $\mu$-Bloch空间${B^\mu }$和小$\mu$-Bloch空间$B_0^\mu$分别定义为 $$ {B^\mu }=\Big\{f\in H({\Bbb D}):\sup\limits_{z\in{\Bbb D}}\mu(|z|)|f'(z)|<\infty\Big\}, $$ $$ B_0^\mu =\Big\{f\in H({\Bbb D}):\lim\limits_{z\rightarrow1}\mu(|z|)|f'(z)|=0\Big\}. $$ 在赋以范数$\| f\| _{{B^\mu }}=|f(0)|+\sup\limits_{z\in{\Bbb D}}\mu(|z|)|f'(z)|$下,${B^\mu }$成为Banach空间, $B_0^\mu$是${B^\mu }$的闭子空间,当$\mu(z)=(1-z^{2})^{\alpha}$时,${B^\mu }$就是$\alpha$-Bloch空间 ${\cal B}^{\alpha}$ (见文献[2, 5, 12]).
Zygmund空间$\ Z$是由满足下列性质的$f\in H({\Bbb D})\cap C(\overline{{\Bbb D}})$组成的函数空间 $$ \sup\limits_{{\rm e}^{{\rm i}\theta}\in\partial{\Bbb D},h>0}\frac{|f({\rm e}^{{\rm i}(\theta+h)})+f({\rm e}^{{\rm i}(\theta-h)})-2f({\rm e}^{{\rm i}\theta})|}{h}<\infty. $$ 根据文献[3,定理5.3],我们知道$f\in\ Z$当且仅当 $\sup\limits_{z\in{\Bbb D}}(1-|z|^{2})|f''(z)|<\infty$. 在赋以范数$\| f\| _{\ Z}=|f(0)|+|f'(0)|+\sup\limits_{z\in{\Bbb D}}(1-|z|^{2})|f''(z)|$下,$\ Z$成为Banach空间. 小Zygmund空间${{\ Z}_0}:=\{f\in\ Z: \lim\limits_{|z|\rightarrow1}(1-|z|^{2})|f''(z)|=0\}$. 对于$f\in\ Z$,根据文献[13],有 \begin{equation}\label{aa} |f'(z)|\leq C\| f\| _{\ Z}\ln\frac{2}{1-|z|^{2}}. \end{equation} (1.1)
空间$F(p,q,s)$ 和小${{\ F}_0}$($0<p,s<\infty$,$-2<q<\infty$) (见文献[17])分别定义为 $$ \ F=\bigg\{f\in H({\Bbb D}):\sup\limits_{a\in{\Bbb D}}\int_{{\Bbb D}}|f'(z)|^{p}(1-|z|^{2})^{q} (1-|\sigma_{a}(z)|^{2})^{s}dm(z)<\infty\bigg\}, $$ $$ {{\ F}_0}=\bigg\{f\in H({\Bbb D}):\lim\limits_{|a|\rightarrow1}\int_{{\Bbb D}}|f'(z)|^{p}(1-|z|^{2})^{q} (1-|\sigma_{a}(z)|^{2})^{s}dm(z)=0\bigg\}, $$ 其中$dm$是${\Bbb D}$上的 规范化Lebesgue面积测度,$\sigma_{a}(z)=\frac{a-z}{1-\bar{a}z}$是 ${\Bbb D}$上的M\"{o}bius变换. 在赋以范数$\| f\| _{\ F}=|f(0)|+\{\sup\limits_{a\in{\Bbb D}}\int_{{\Bbb D}} |f'(z)|^{p}(1-|z|^{2})^{q}(1-|\sigma_{a}(z)|^{2})^{s}dm(z)\}^{\frac{1}{p}}$ 下, $\ F$成为Banach空间,${{\ F}_0}$ 是$\ F$的子空间且 $\ F$ 推广了许多经典的函数空间. 诸如$s>1$,$\ F={\cal B}^{\frac{q+2}{p}}$,${{\ F}_0}={\cal B}^{\frac{q+2}{p}}_{0}$; 对于$0<s\leq1$,$\ F\subset{\cal B}^{\frac{q+2}{p}}$, ${{\ F}_0}\subset{\cal B}^{\frac{q+2}{p}}_{0}$; 而$F(2,0,s)={\cal Q}_{s}$, $F_{0}(2,0,s)={\cal Q}_{s,0}$; 此外$F(2,0,1)=BMOA$,$F_{0}(2,0,1)=VMOA$; 如果$q+s\leq1$,则$\ F$是一个常数函数空间.
设$\varphi$是${\Bbb D}$到自身的一个解析映射,则$\varphi$按下式 $$ (C_{\varphi}f)(z)=f(\varphi(z)),f\in H({\Bbb D}),z\in{\Bbb D}, $$ 导出$H({\Bbb D})$上的一个线性算子$C_{\varphi}$,称之为复合算子. 不同函数空 间上的复合算子多年来受到了广泛的研究(见文献[6, 10]), 特别地,在文献 [7]中,Li S和 Stevic S首次引入了广义复合算子的概念, 并研究了Zygmund空间和$\alpha$-Bloch空间上广义复合算子的一些基本性质. 对于$g\in H({\Bbb D})$和解析自映射$\varphi: {\Bbb D}\to{\Bbb D}$,广义复合算子$ C_{\varphi}^{g}$定义为 $$ (C_{\varphi}^{g}f)(z)=\int_{0}^{z}f'(\varphi(t))g(t){\rm d}t. $$ 显然 当$g=\varphi'$时,$C_{\varphi}^{g}$本质上就是复合算子. 广义复合算子由于与一些经典函数空间上的等距表示的紧密联系而日益受到广泛研究 (参见文献[4, 7]).
本文主要研究了从Zygmund空间到${\cal B}^{\mu}$空间,$\ F$空间到${\cal B}^{\mu}$ 空间及其相应小空间上的广义复合算子的有界性和紧性,得到了一些充分必要的判别条件, 拓展了文献[7]中的主要结果. 下文中用$C$表示常数,约定它是绝对正常数并且在不同的地方可以不同.
由于后面主要定理证明的需要,在本节中我们首先给出下面几个引理.
引理2.1 设$g\in H({\Bbb D})$,$\varphi:{\Bbb D}\rightarrow{\Bbb D}$解析,$\mu$是正规权. 则$C_{\varphi}^{g}:\ Z$ (或${{\ Z}_0})\rightarrow{B^\mu }$ (或$B_0^\mu )$是紧算子当且仅当 $C_{\varphi}^{g}:\ Z$ (或${{\ Z}_0})\rightarrow{B^\mu }$ (或$B_0^\mu )$有界并且对于 $\ Z$ (或${{\ Z}_0})$中的任意有界序列$\{f_{n}\}_{n\in\ N}$,$f_{n}$在${\Bbb D}$的 紧子集上一致收敛于$0$时,有$\| C_{\varphi}^{g}f_{n}\| _{{B^\mu }}\rightarrow0$.
注 此定理可以用文献[1]中的常规方法类似证明,故我们略去其证明过程.
引理2.2[9] $B_0^\mu$中的闭集${\Bbb K}$是紧的当且仅当${\Bbb K}$有界并且 $$ \lim\limits_{|z|\rightarrow1}\sup\limits_{f\in{\Bbb K}}\mu(|z|)|f'(z)|=0. $$
定理2.1 设$g\in H({\Bbb D})$,$\varphi:{\Bbb D}\rightarrow{\Bbb D}$解析,$\mu$是正规权,则下面条件等价.
(1) $C_{\varphi}^{g}:\ Z\rightarrow{B^\mu }$有界.
(2) $C_{\varphi}^{g}:{{\ Z}_0}\rightarrow{B^\mu }$有界.
(3) \begin{equation}\label{a1} \sup\limits_{z\in{\Bbb D}}\mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^{2}}<\infty. \end{equation} (2.1) 证 $(1)\Rightarrow(2)$ 显然.
$(2)\Rightarrow(3)$~ 设$C_{\varphi}^{g}:Z_{0}\rightarrow{B^\mu }$有界. 则对$f\in Z_{0}$存在常数$C$使得 $$ \| C_{\varphi}^{g}f\| _{{B^\mu }}\leq C\| f\| _{\ Z}. $$ 取$f(z)=z\in{{\ Z}_0}$,则有 \begin{equation}\label{a2} \sup\limits_{z\in{\Bbb D}}\mu(|z|)|g(z)|<\infty. \end{equation} (2.2) 令 \begin{equation}\label{a3} h(z)=(z-1)\bigg{[}\Big(1+\ln\frac{1}{1-z}\Big)^{2}+1\bigg{]}, \end{equation} (2.3) \begin{equation}\label{a4} h_{a}(z)=\frac{h(\bar{a}z)}{\bar{a}}\Big(\ln\frac{1}{1-|a|^{2}}\Big)^{-1}. \end{equation} (2.4)
其中$a\in{\Bbb D}\setminus\{0\}$. 则$h_{a}\in{{\ Z}_0}$ (见文献[13]). 计算易知 $$ h'_{a}(z)=\Big(\ln\frac{1}{1-\bar{a}z}\Big)^{2}\Big(\ln\frac{1}{1-|a|^2}\Big)^{-1}. $$ 如果$|\varphi(\lambda)|>\frac{1}{2}$,我们有 \begin{eqnarray}\label{a5} \infty & >&\| C_{\varphi}^{g}h_{\varphi(\lambda)}\| _{{B^\mu }}\geq\mu(|\lambda|)| (C_{\varphi}^{g}h_{\varphi(\lambda)})'(\lambda)|\nonumber\\ & =&\mu(|\lambda|)|h'_{\varphi(\lambda)}(\varphi(\lambda))\| g(\lambda)| =\mu(|\lambda|)|g(\lambda)|\ln\frac{1}{1-|\varphi(\lambda)|^2}. \end{eqnarray} (2.5) 另外,如果$|\varphi(\lambda)|\leq\frac{1}{2}$,由(2.2)式, \begin{equation}\label{a6} \sup\limits_{|\varphi(\lambda)|\leq\frac{1}{2}}\mu(|\lambda|)|g(\lambda)|\ln\frac{1}{1-|\varphi(\lambda)|^2}\leq\sup\limits_{\lambda\in{\Bbb D}}\mu(|\lambda|)|g(\lambda)|\ln\frac{4}{3}<\infty. \end{equation} (2.6) 由(2.2)式,(2.5)式和(2.6)式,即得到(2.1)式.
$(3)\Rightarrow(1)$~ 假设(2.1)式成立. 则对任意$f\in\ Z$,由(1.1)式得 \begin{equation}\label{a7} \mu(|z|)|(C_{\varphi}^{g}f)'(z)|=\mu(|z|)|f'(\varphi(z))\| g(z)|\leq C\| f\| _{\ Z}\mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^2}. \end{equation} (2.7) 在上式中对$z\in{\Bbb D}$取上确界,结合(2.1)式. 即得$C_{\varphi}^{g}:\ Z\rightarrow{B^\mu }$有界.
定理2.2 设$g\in H({\Bbb D})$,$\varphi:{\Bbb D}\rightarrow{\Bbb D}$解析,$\mu$ 是正规权,则下面条件等价.
(1) $C_{\varphi}^{g}:\ Z\rightarrow{B^\mu }$是紧算子.
(2) $C_{\varphi}^{g}:{{\ Z}_0}\rightarrow{B^\mu }$是紧算子.
(3) $C_{\varphi}^{g}:\ Z\rightarrow{B^\mu }$有界,并且 \begin{equation}\label{b1} \lim\limits_{|\varphi(z)|\rightarrow1}\mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^{2}}=0. \end{equation} (2.8) 证 $(1)\Rightarrow(2)$ 显然.
$(2)\Rightarrow(3)$ 设$C_{\varphi}^{g}:{{\ Z}_0}\rightarrow{B^\mu }$是紧算子, 则$C_{\varphi}^{g}:{{\ Z}_0}\rightarrow{B^\mu }$有界. 由定理2.1知 $C_{\varphi}^{g}:\ Z\rightarrow{B^\mu }$有界. 设$\{z_{n}\}_{n\in\mathbb{N}}$是${\Bbb D}$中的序列满足 $n\rightarrow\infty$时,$|\varphi(z_n)|\rightarrow1$并且$\varphi(z_n)\neq0(n\in\mathbb{N})$.
令 $$ h_{n}(z)=\frac{h(\overline{\varphi(z_n)}z)}{\overline{\varphi(z_n)}} \Big(\ln\frac{1}{1-|\varphi(z_n)|^{2}}\Big)^{-1},n\in\mathbb{N}. $$ 从定理2.1的证明中可知对每个$n\in\mathbb{N}$有$h_n\in{{\ Z}_0}$. 此外,当$n\rightarrow\infty$时, $h_n$在${\Bbb D}$的紧子集上一致收敛于$0$.
由于 \begin{eqnarray*} \| C_{\varphi}^{g}h_n\| _{{B^\mu }} &=&\sup\limits_{z\in{\Bbb D}}\mu(|z|)|(C_{\varphi}^{g}h_{n})'(z)|\geq\mu(|z_n|)|h'_{n}(\varphi(z_n))\| g(z_n)| \\ &=&\mu(|z_n|)|g(z_n)|\ln\frac{1}{1-|\varphi(z_n)|^2}, \end{eqnarray*}由引理2.1即有$\lim\limits_{n\rightarrow\infty}\mu(|z_n|)|g(z_n)|\ln\frac{1}{1-|\varphi(z_n)|^2}=0$,由此式也有$\lim\limits_{n\rightarrow\infty}\mu(|z_n|)|g(z_n)|=0$,这就得到了(2.8)式.
$(3)\Rightarrow(1)$ 设$C_{\varphi}^{g}:\ Z\rightarrow{B^\mu }$有界并且(2.8)式成立. 由定理2.1知 \begin{equation}\label{b2} L:=\sup\limits_{z\in{\Bbb D}}\mu(|z|)|g(z)|<\infty. \end{equation} (2.9) 设$\{f_n\}_{n\in\mathbb{N}}$是$\ Z$中的序列满足$\sup\limits_{n\in\mathbb{N}}\| f_n\| _{\ Z}\leq M$,$M>0$, 并且当$n\rightarrow\infty$时,$f_n$在${\Bbb D}$的紧子集上一致收敛于$0$. 由(2.8)式,对任意$\varepsilon>0$,存在常数$\delta\in(0,1)$, 使得当$\delta<|\varphi(z)|<1$有 $$ \mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^{2}}<\varepsilon/M. $$ 令$K=\{w\in{\Bbb D}:|w|\leq\delta\}$,结合(1.1)式有 \begin{eqnarray*} \| C_{\varphi}^{g}f_n\| _{{B^\mu }} & =&\sup\limits_{z\in{\Bbb D}}\mu(|z|)|f_n'(\varphi(z))\| g(z)| \\ & \leq&\sup\limits_{\{z\in{\Bbb D}:|\varphi(z)|\leq\delta\}}\mu(|z|)|f_n'(\varphi(z))\| g(z)|+\sup\limits_{\{z\in{\Bbb D}:\delta<|\varphi(z)|<1\}}\mu(|z|)|f_n'(\varphi(z))\| g(z)|\\ & \leq& L\sup\limits_{\{w\in K\}}|f'_{n}(w)|+C\| f_n\| _{\ Z}\sup\limits_{\{z\in{\Bbb D}:\delta<|\varphi(z)|<1\}}\mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^2}\\ & \leq &L\sup\limits_{\{w\in K\}}|f'_{n}(w)|+C\varepsilon. \end{eqnarray*} 由Cauchy估计,若$\{f_n\}_{n\in\mathbb{N}}$在${\Bbb D}$的紧子集上一致收敛于$0$, 则$\{f'_n\}_{n\in\mathbb{N}}$在${\Bbb D}$的紧子集上也一致收敛于$0$. $K$是紧集, $\lim\limits_{n\rightarrow\infty}\sup\limits_{w\in K}|f'_{n}(w)|=0$. 在上面最后一个不等式中令$n\rightarrow\infty$, 则$\lim\limits_{n\rightarrow\infty}\| C_{\varphi}^{g}f_n\| _{{B^\mu }}\leq C\varepsilon$. $\varepsilon$是任意的,此极限等于$0$. 根据引理2.1即得结论.
定理2.3 设$g\in H({\Bbb D})$,$\varphi:{\Bbb D}\rightarrow{\Bbb D}$解析,$\mu$是正规权, 则$C_{\varphi}^{g}:{{\ Z}_0}\rightarrow B_0^\mu $有界当且仅当$C_{\varphi}^{g}:{{\ Z}_0}\rightarrow{B^\mu }$有界并且 \begin{equation}\label{c1} \lim\limits_{|z|\rightarrow1}\mu(|z|)|g(z)|=0. \end{equation} (2.10)
证 设$C_{\varphi}^{g}:{{\ Z}_0}\rightarrow B_0^\mu $有界,易知$C_{\varphi}^{g}:{{\ Z}_0}\rightarrow{B^\mu }$有界. 取函数$f(z)=z\in{{\ Z}_0}$,则立即可得(2.10)式.
反过来,设$C_{\varphi}^{g}:{{\ Z}_0}\rightarrow{B^\mu }$有界,并且(2.10)式成立. 则对任意多项式$P$ 有 \begin{equation}\label{c2} \mu(|z|)|(C_{\varphi}^{g}P)'(z)|=\mu(|z|)|P'(\varphi(z))\| g(z)|. \end{equation} (2.11) 而 \begin{equation}\label{c3} \sup\limits_{w\in{\Bbb D}}|P'(w)|<\infty. \end{equation} (2.12) 由(2.11)和(2.12)式结合(2.10)式知$C_{\varphi}^{g}P\in B_0^\mu$. 又因为多项式在$ {{\ Z}_0} $中稠密(见文献[8]),则对任意$f\in{{\ Z}_0}$, 存在一个多项式序列$\{P_n\}_{n\in\mathbb{N}}$ 使得当$n\rightarrow\infty$时, $\| f-P_n\| _{\ Z}\rightarrow0$. 则当$n\rightarrow\infty$时有 $$ \| C_{\varphi}^{g}f-C_{\varphi}^{g}P_{n}\| _{{B^\mu }}\leq\| C_{\varphi}^{g}\| _{{{\ Z}_0}\rightarrow{B^\mu }}\| f-P_n\| _{\ Z}\rightarrow0. $$ 而$B_0^\mu$是${B^\mu }$的闭子集,得到$C_{\varphi}^{g}({{\ Z}_0})\subseteq B_0^\mu $, 由此证明了$C_{\varphi}^{g}:{{\ Z}_0}\rightarrow B_0^\mu $有界.
定理2.4 设$g\in H({\Bbb D})$,$\varphi:{\Bbb D}\rightarrow{\Bbb D}$解析,$\mu$是正规权,则下面条件等价.
(1) $C_{\varphi}^{g}:\ Z\rightarrow B_0^\mu $是紧算子.
(2) $C_{\varphi}^{g}:{{\ Z}_0}\rightarrow B_0^\mu $是紧算子.
(3) $C_{\varphi}^{g}:\ Z\rightarrow{B^\mu }$有界,并且 \begin{equation}\label{d1} \lim\limits_{|z|\rightarrow1}\mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^{2}}=0. \end{equation} (2.13)
证 $(1)\Rightarrow(2)$显然.
$(2)\Rightarrow(3)$ 设 $C_{\varphi}^{g}:{{\ Z}_0}\rightarrow B_0^\mu $是紧算子, 则$C_{\varphi}^{g}:{{\ Z}_0}\rightarrow B_0^\mu $有界. 由定理2.3知(2.10)式成立.
当$\| \varphi\| _{\infty}<1$时,根据(2.10)式得 $$ \lim\limits_{|z|\rightarrow1}\mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^{2}}\leq\ln\frac{2}{1-\| \varphi\| _{\infty}^{2}}\lim\limits_{|z|\rightarrow1}\mu(|z|)|g(z)|=0. $$ 即得(2.13)式.
现在设$\| \varphi\| _{\infty}=1$. 又设$\{z_{n}\}_{n\in\mathbb{N}}$是${\Bbb D}$中的序列满足当 $n\rightarrow\infty$时,$|\varphi(z_n)|\rightarrow1$. 由于$C_{\varphi}^{g}:{{\ Z}_0}\rightarrow{B^\mu }$是紧算子. 由定理2.2有 $$ \lim\limits_{|\varphi(z)|\rightarrow1}\mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^{2}}=0, $$ 则对任意$\varepsilon>0$,存在$r\in(0,1)$使得当$r<|\varphi(z)|<1$时有 $\mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^{2}}<\varepsilon$. 从(2.10)式又可得存在$\sigma\in(0,1)$使得当$\sigma<|z|<1$时有 $\mu(|z|)|g(z)|\leq\varepsilon/\ln\frac{2}{1-r^{2}}$.
因此当$\sigma<|z|<1$,$r<|\varphi(z)|<1$时有 \begin{equation}\label{d2} \mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^{2}}<\varepsilon. \end{equation} (2.14) $\sigma<|z|<1$,$|\varphi(z)|\leq r$时 \begin{equation}\label{d3} \mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^{2}}\leq\mu(|z|)|g(z)|\ln\frac{2}{1-r^{2}}<\varepsilon. \end{equation} (2.15) 由(2.14)式与(2.15)式即得(2.13)式.
$(3)\Rightarrow(1)$ 设$f\in\ Z$,由(1.1)式知 $$ \mu(|z|)|(C_{\varphi}^{g}f)'(z)|=\mu(|z|)|f'(\varphi(z))\| g(z)|\leq C\| f\| _{\ Z}\mu(|z|)|g(z)|\ln\frac{2}{1-|\varphi(z)|^2}. $$ 对上面不等式关于$f\in\ Z$,$\| f\| _{\ Z}\leq1$取上确界. 并令$|z|\rightarrow1$,由(2.13)式得 $$ \lim\limits_{|z|\rightarrow1}\sup\limits_{\| f\| _{\ Z}\leq1}\mu(|z|)|(C_{\varphi}^{g}f)'(z)|=0 $$ 由引理2.2得到$C_{\varphi}^{g}:\ Z\rightarrow B_0^\mu $是紧算子.
在这一节中,我们对从$\ F$(p,q,s) (或${{\ F}_0}$(p,q,s))到${\cal B}^{\mu}$ (或$B_0^\mu)$上的 广义复合算子的有界性、 紧性进行刻画,首先介绍下面引理.
引理3.1 [17] 设$0<p,s<\infty$,$-2<q<\infty$,$q+s>-1$并且$f\in\ F$(p,q,s), 则存在常数$C>0$使得$\| f\| _{{\beta ^\alpha }}\leq C\| f\| _{F}$,此外,如果$f\in{{\ F}_0}$(p,q,s), 则$f\in\beta _0^\alpha$. 这里$\alpha=\frac{q+2}{p}$.
类似引理2.1,我们易证下面的结论.
引理3.2 设$g\in H({\Bbb D})$,$\varphi:{\Bbb D}\rightarrow{\Bbb D}$解析,$\mu$是正规权. 又设$0<p,s<\infty$,$-2<q<\infty$,$q+s>-1$. 则$C_{\varphi}^{g}:\ F$ (p,q,s)(或$\;{F_0}(p,q,s) \to {B^\mu }$)(或$B_0^\mu)$ 是紧算子当且仅当$C_\varphi ^g:F(p,q,s)$(或${F_0}(p,q,s) \to {B^\mu }$ (或$B_0^\mu)$ 有界并且对于${\ F}(p,q,s)$ (或${{\ F}_0}(p,q,s))$中的任意有界序列$\{f_{n}\}_{n\in\mathbb{N}}$, $f_{n}$在${\Bbb D}$ 的紧子集上一致收敛于$0$时,有$\| C_{\varphi}^{g}f_{n}\| _{{B^\mu }}\rightarrow0$.
定理3.1 设$g\in H({\Bbb D})$,$\varphi:{\Bbb D}\rightarrow{\Bbb D}$解析,$\mu$是正规权. 又设$0<p,s<\infty$, $-2<q<\infty$,$q+s>-1$. 则$C_\varphi ^g:F{\text{(p,q,s)}} \to {B^\mu }$有界当且仅当 \begin{equation}\label{e1} \sup\limits_{z\in{\Bbb D}}\frac{\mu(|z|)|g(z)|}{(1-|\varphi(z)|^{2})^{\alpha}}<\infty. \end{equation} (3.1)
证 设$C_\varphi ^g:F(p,q,s) \to {B^\mu }$有界. 令$\alpha=\frac{q+2}{p}$,固定$w\in{\Bbb D}$, 考虑函数 \begin{equation}\label{e2} f_{w}(z)=\frac{(z-\varphi(w))(1-|\varphi(w)|^{2})}{(1-\overline{\varphi(w)}z)^{\alpha+1}}. \end{equation} (3.2) 根据文献[16]有${\left\| {{f_w}} \right\|_{F(p,q,s)}} \leqslant C$,这里的常数$C$与$w$的取值无关. 由计算知$f_{w}(\varphi(w))=0$,$f'(\varphi(w))=\frac{1}{(1-|\varphi(w)|^2)^{\alpha}}$. 则 $$ \frac{\mu(|w|)|g(w)|}{(1-|\varphi(w)|^{2})^{\alpha}}=\mu(|w|)|f'(\varphi(w))\| g(w)|\leq\| C_{\varphi}^{g}f_{w}\| _{{B^\mu }}<\infty. $$ 即(3.1)式成立.
反之,设(3.1)式成立. 对任意$f \in F(p,q,s)$,根据引理3.1有 \begin{eqnarray*} \mathop {\sup }\limits_{z \in \mathbb{D}} {(1 - |z{|^2})^\alpha }|f'(z)| \leqslant C{\left\| f \right\|_{F{\text{(p,q,s)}}}} \end{eqnarray*} 则 \begin{eqnarray*} {\left\| {C_\varphi ^gf(z)} \right\|_{{B^\mu }}} = \mathop {\sup }\limits_{z \in \mathbb{D}} \mu (|z|)|f'(\varphi (z))\left\| {g(z)|} \right. \hfill \\ = \mathop {\sup }\limits_{z \in \mathbb{D}} {(1 - |\varphi (z){|^2})^\alpha }|f'(\varphi (z))|\frac{{\mu (|z|)|g(z)|}}{{{{(1 - |\varphi (z){|^2})}^\alpha }}} \hfill \\ \leqslant C{\left\| f \right\|_{F{\text{(p,q,s)}}}}\mathop {\sup }\limits_{z \in \mathbb{D}} \frac{{\mu (|z|)|g(z)|}}{{{{(1 - |\varphi (z){|^2})}^\alpha }}} \hfill \\ \end{eqnarray*} 由(3.1)式知$C_\varphi ^g:F{\text{(p,q,s)}} \to {B^\mu }$有界.
定理3.2 设$g\in H({\Bbb D})$,$\varphi:{\Bbb D}\rightarrow{\Bbb D}$解析,$\mu$是正规权. 又设$0<p,s<\infty$, $-2<q<\infty$,$q+s>-1$. 则$C_\varphi ^g:F{\text{(p,q,s)}} \to {B^\mu }$是紧算子当且仅当 \begin{equation}\label{f1} \lim\limits_{|\varphi(z)|\rightarrow1}\frac{\mu(|z|)|g(z)|}{(1-|\varphi(z)|^{2})^{\alpha}}=0. \end{equation} (3.3)
证 设$C_\varphi ^g:F{\text{(p,q,s)}} \to {B^\mu }$是紧算子. 令$\alpha=\frac{q+2}{p}$, 并且$\{z_n\}_{z\in\mathbb{N}}$是${\Bbb D}$中的序列满足当$n\rightarrow\infty$时,$|\varphi(z_{n})|\rightarrow1$. 考虑函数 $$ f_{n}(z)=\frac{(z-\varphi(z_{n}))(1-|\varphi(z_{n})|^{2})}{(1-\overline{\varphi(z_{n})}z)^{\alpha+1}}. $$ 同样用文献[16]中的方法得到${f_n} \in F{\text{(p,q,s)}}$,$(f_{n})_{n\in\mathbb{N}}$是$F(p,q,s)$中 的一个有界序列,并且在${\Bbb D}$的紧子集上一致收敛于$0$. 注意到$f_{n}(\varphi(z_n))=0$,$f'(\varphi(z_n))=\frac{1}{(1-|\varphi(z_n)|^2)^{\alpha}}$. 即有 $$ \frac{\mu(|z_{n}|)|g(z_{n})|}{(1-|\varphi(z_{n})|^{2})^{\alpha}}=\mu(|z_{n}|)|f'(\varphi(z_{n}))\| g(z_{n})|\leq\| C_{\varphi}^{g}f_{n}\| _{{B^\mu }}. $$ 根据引理3.2,(3.3)式成立.
反过来,设(3.3)式成立. 令$\{f_{n}\}_{n\in\mathbb{N}}$是$\ F(p,q,s)$中有界序列并在${\Bbb D}$的紧 子集上一致收敛于$0$. 令$M = \mathop {\sup }\limits_n {\left\| {{f_n}} \right\|_{F{\text{(p,q,s)}}}}<\infty $,根据引理3.2, 往证$\lim\limits_{n\rightarrow\infty}\| C_{\varphi}^{g}f_{n}\| _{{B^\mu }}=0$. 由(3.3)式,对于任意$\varepsilon>0$,存在$r\in(0,1)$,当$|\varphi(z)|>r$时, 有$\frac{\mu(|z|)|g(z)|}{(1-|\varphi(z)|^{2})^{\alpha}}<\varepsilon$. 由Cauchy 估计, 如果$\{f_{n}\}_{n\in\mathbb{N}}$在${\Bbb D}$的紧子集上一致收敛于$0$,则$\{f'_{n}\}_{n\in\mathbb{N}}$ 在${\Bbb D}$的紧子集上也一致收敛于$0$,即存在$n_{0}>0$使得当$n>n_{0}$ 时, $\sup\limits_{\{|\varphi(w)|\leq r\}}|f'_{n}(\varphi(w))|<\varepsilon$. 由以上叙述及引理3.1得到 \begin{eqnarray*} & &\sup\limits_{w\in{\Bbb D}}\mu(|w|)|f'_{n}(\varphi(w))\| g(w)| \\ & \leq&\sup\limits_{\{|\varphi(w)|\leq r\}}\mu(|w|)|f'_{n}(\varphi(w))\| g(w)| +\sup\limits_{\{|\varphi(w)|>r\}}\mu(|w|)|f'_{n}(\varphi(w))\| g(w)|\\ & =& \sup\limits_{\{|\varphi(w)|\leq r\}}\mu(|w|)|f'_{n}(\varphi(w))\| g(w)|\\ & &+ \sup\limits_{\{|\varphi(w)|>r\}}(1-|\varphi(w)|^2)^{\alpha}|f'_{n}(\varphi(w))|\frac{\mu(|w|)|g(w)|}{(1-|\varphi(w)|^2)^{\alpha}}\\ &\leq &C\sup\limits_{\{|\varphi(w)|\leq r\}}|f_{n}'(\varphi(w))|+\| f_{n}\| _{\ F}\sup\limits_{\{|\varphi(w)|>r\}}\frac{\mu(|w|)|g(w)|}{(1-|\varphi(w)|^{2})^{\alpha}}\\ & \leq& (C+M)\varepsilon, \end{eqnarray*} 即当$n\rightarrow\infty$时,$\| C_{\varphi}^{g}f_{n}\| _{{B^\mu }}=\sup\limits_{w\in{\Bbb D}}\mu(|w|)|f'(\varphi(w))\| g(w)|\rightarrow0$,证明完成.
定理3.3 设$g\in H({\Bbb D})$,$\varphi:{\Bbb D}\rightarrow{\Bbb D}$解析,$\mu$是正规权. 又设$0<p,s<\infty$, $-2<q<\infty$,$q+s>-1$. 则$C_\varphi ^g:{F_{{\text{(p,q,s)}}}} \to {B^\mu }$有界当且仅当 $C_\varphi ^g:{F_{{\text{(p,q,s)}}}} \to {B^\mu }$有界并且 \begin{equation}\label{g1} \lim\limits_{|z|\rightarrow1}\mu(|z|)|g(z)|=0. \end{equation} (3.4)
证 设$C_\varphi ^g:{F_{{\text{(p,q,s)}}}} \to {B^\mu }$有界,则$C_\varphi ^g:{F_{{\text{(p,q,s)}}}} \to {B^\mu }$有界. 取$f(z) = z \in {F_0}{\text{(p,q,s)}}$,即得到(3.4)式.
反之,设$C_\varphi ^g:{F_{{\text{(p,q,s)}}}} \to {B^\mu }$有界并且(3.4)式成立. 则对任意多项式$P$有 \begin{equation}\label{g2} \mu(|z|)|(C_{\varphi}^{g}P)'(z)|=\mu(|z|)|P'(\varphi(z))\| g(z)|. \end{equation} (3.5) 由(3.4)式,(3.5)式及定理2.3中的(2.12)式表明$C_{\varphi}^{g}P\in B_0^\mu $. 而多项式在${F_0}{\text{(p,q,s)}}$中稠密,所以对任意$f \in {F_0}{\text{(p,q,s)}}$存在多项式序列$\{P_{n}\}_{n\in\mathbb{N}}$ 使得当$n\rightarrow\infty$ 时,$\| f-P_{n}\| _{\ F}\rightarrow0$,因此 $$ \| C_{\varphi}^{g}f-C_{\varphi}^{g}P_n\| _{{B^\mu }}\leq\| C_{\varphi}^{g}\| _{{{\ F}_0}\rightarrow{B^\mu }}\| f-P_n\| _{\ F}\rightarrow0. $$ 又$B_0^\mu$是${B^\mu }$的闭子集,$C_{\varphi}^{g}({{\ F}_0})\subseteq B_0^\mu $, 所以有$C_\varphi ^g:F{\text{(p,q,s)}} \to {B^\mu } $有界.
下面我们给出在满足一定条件下小空间与对应空间上的广义复合算子的紧性是等价的.
定理3.4 设$g\in H({\Bbb D})$,$\varphi:{\Bbb D}\rightarrow{\Bbb D}$解析,$\mu$是正规权. 又设$0<p,s<\infty$, $-2<q<\infty$,$q+s>-1$. 则下面条件等价.
(1) $C_\varphi ^g:F{\text{(p,q,s)}} \to {B^\mu }$是紧算子.
(2) $C_\varphi ^g:F{\text{(p,q,s)}} \to {B^\mu } $是紧算子.
(3) \begin{equation}\label{h1} \sup\limits_{|z|\rightarrow1}\frac{\mu(|z|)|g(z)|}{(1-|\varphi(z)|^{2})^{\alpha}}=0. \end{equation} (3.6)
证 $(1)\Rightarrow(2)$ 显然.
$(2)\Rightarrow(3)$ 令$\alpha=\frac{q+2}{p}$. 设$C_\varphi ^g:F{\text{(p,q,s)}} \to {B^\mu } $是紧算子, 由引理2.2,对$M>0$有 $$ \lim\limits_{|z|\rightarrow1}\sup\limits_{\| f\| _{\ F\leq M,f\in{{\ F}_0}}} \mu(|z|)|(C_{\varphi}^{g}f)'(z)|=0. $$ 注意到在定理3.1的证明中给出的函数$f_{w}(z)=\frac{(z-\varphi(w))(1-|\varphi(w)|^{2})}{(1-\overline{\varphi(w)}z)^{\alpha+1}}$属于${{\ F}_0}$, 并且关于$w$范数一致有界,则 $$ \sup\limits_{|w|\rightarrow1}\frac{\mu(|w|)|g(w)|}{(1-|\varphi(w)|^{2})^{\alpha}}=0. $$ 即得(3.6)式成立.
$(3)\Rightarrow(1)$ 设$f\in\ F$满足$\| f\| _{\ F}\leq1$. 由引理3.1, $f\in{\cal B}^{\alpha}$,$\| f\| _{{\cal B}^{\alpha}}\leq C\| f\| _{\ F}$. \begin{eqnarray*} \mu(|z|)|(C_{\varphi}^{g}f)'(z)|&=&\mu(|z|)|f'(\varphi(z))\| g(z)|\\ &=&(1-|\varphi(z)|^2)^{\alpha}|f'(\varphi(z))|\frac{\mu(|z|)|g(z)|}{(1-|\varphi(z)|^2)^{\alpha}} \\ & \leq &C\| f\| _{\ F}\frac{\mu(|z|)|g(z)|}{(1-|\varphi(z)|^{2})^{\alpha}}. \end{eqnarray*} 由(3.6)式得 $ \lim\limits_{|z|\rightarrow1}\sup\limits_{\| f\| _{\ F\leq1}} \mu(|z|)|(C_{\varphi}^{g}f)'(z)|=0. $ 由引理2.2知$C_\varphi ^g:F{\text{(p,q,s)}} \to {B^\mu }$ 是紧算子.