数学物理学报  2015, Vol. 35 Issue (4): 748-755   PDF (270KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
陆恒
张太忠
α-Zygmund空间到β-Bloch空间的加权复合算子
陆恒, 张太忠    
南京信息工程大学数学与统计学院, 南京 210044
摘要: 该文得到了从单位圆上 α-Zygmund空间到 β-Bloch空间的加权复合算子的有界性和紧性的充分且必要的条件.
关键词: 加权复合算子     α-Zygmund空间     β-Bloch空间     有界性     紧性    
Weighted Composition Operators from α-Zygmund Spaces into β-Bloch Spaces
Lu Heng, Zhang Taizhong    
School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044
Abstract: In this paper, we prove sufficient and necessary conditions for weighted composition operators from α-Zygmund spaces into β-Bloch spaces in the unit disk to be bounded and compact.
Key words: Weighted composition operator     α-Zygmund space     β-Bloch space     Boundedness     Compactness    
 
1 引言和主要结论

设$D$为复平面$C$上的开单位圆盘,$H(D)$表示$D$ 上所有全纯函数的集合.

对于$0<\alpha<\infty$, $$ {B^\alpha}=\Big\{f\in H(D):\| f\|_{B^{\alpha}}=|f(0)|+\sup_{z\in D}(1-|z|^{2})^{\alpha}|f'(z)|<\infty\Big\} $$ 称为$\alpha$-Bloch 空间; $$ {B_{0}^\alpha}=\Big\{f\in H(D):\lim_{|z|\rightarrow1}\sup_{z\in D}(1-|z|^{2})^{\alpha}|f'(z)|=0\Big\} $$ 称为小$\alpha$-Bloch 空间.

当$\alpha$={1}时,$B^{\alpha}$、$B_{0}^{\alpha}$ 空间即为经典的Bloch 空间和小Bloch 空间. $$ {Z^\alpha}=\Big\{f\in H(D):\| f\|_{Z^{\alpha}}=|f(0)|+\sup_{z\in D}(1-|z|^{2})^{\alpha}|f''(z)|<\infty\Big\} $$ 称为$\alpha$-Zygmund空间.

在范数$\|f\|_{Z^{\alpha}}=|f(0)|+\sup\limits_{z\in D}(1-|z|^{2})^{\alpha}|f''(z)|$下, $\alpha$-Zygmund 空间成为Banach空间. 若函数$f\in H(D)$ 满足关系式 $\lim\limits_{|Z|\rightarrow1}(1-|z|^{2})^{\alpha}|f''(z)|=0$,则称属于小$\alpha$-Zygmund空间, 记为$f\in Z_{0}^{\alpha}$. 显然$Z_{0}^{\alpha}$ 是 $Z^{\alpha}$ 的一个闭子空间. 当$\alpha=1$ 时,$Z_{0}^{\alpha}$和$Z^{\alpha}$空间即为经典的Zygmund空间$Z$和 小Zygmund空间$Z_{0}$.

设$u\in H(D)$,$\varphi$ 是 $D\rightarrow D$ 的全纯自映射, 定义$H(D)$上的加权复合算子$uC_{\varphi}$如下: $(uC_{\varphi})(f)(z)=u(z)f(\varphi(z)), z\in D,f\in H(D)$. 它同时是乘积算子和复合算子的推广, 当 $u(z)=1$ 时上述算子就是由 $\varphi$ 诱导的复合算子 $C_{\varphi}$. 对于这方面的基础知识,可参见文献[1, 2, 3]. 文献[4, 5, 6, 7] 研究了 $\alpha$-Bloch空间之间的复合算子和加权复合算子的有界性和紧性. 文献[8, 9]研究了 $\alpha$-Zygmund空间之间的加权复合算子的有界性和紧性. 最近,李颂孝和 Stevic[10]研究了从Zygmund空间到Bloch空间的加权复合算子, 分别得到加权复合算子成为有界算子的充分且必要条件和成为紧算子的充分且必要条件. 本文推广了文献[10] 中的结果,对于 $0<\alpha,\beta<\infty$,得到了单位圆 $D$ 上从 $\alpha$-Zygmund空间到 $\beta$-Bloch空间的加权复合算子的有界性和紧性的充 分且必要条件,详见本文定理3.1,定理3.2(第3节).


2 预备知识

引理2.1[8] 设$\alpha>0$,若$f\in Z^{\alpha}$,则

1)~ $|f'(z)|\leq\frac{2}{1-\alpha}\|f\|_{Z^{\alpha}}$,$|f(z)|\leq\frac{2}{1-\alpha}\|f\|_{Z^{\alpha}}$,$0<\alpha<1$;

2)~ $|f'(z)|\leq2\|f\|_{Z}\log\frac{2}{1-|z|}$,$|f(z)|\leq\|f\|_{Z^{\alpha}}$,$\alpha=1$;

3)~ $|f'(z)|\leq\frac{2}{\alpha-1}\|f\|_{Z^{\alpha}}(1-|z|)^{1-\alpha}$,$\alpha>1$;

4)~ $|f(z)|\leq\frac{2}{(\alpha-1)(2-\alpha)}\|f\|_{Z^{\alpha}}$,$1<\alpha<2$;

5)~ $|f(z)|\leq2\|f\|_{Z^{\alpha}}\log\frac{2}{1-|z|}$,$\alpha=2$;

6)~ $|f(z)|\leq\frac{2}{(\alpha-1)(\alpha-2)}\|f\|_{Z^{\alpha}}(1-|z|)^{2-\alpha}$,$\alpha>2$.

引理2.2 [6] 设$\alpha>0$,若$f\in B^{\alpha}$,则

1)~ $|f(z)|\leq\frac{2-\alpha}{1-\alpha}\|f\|_{B^{\alpha}}$,$0<\alpha<1$;

2)~ $|f(z)|\leq\frac{\|f\|_{B^{\alpha}}}{\log2}\log\frac{2}{1-|z|^{2}}$,$\alpha=1$;

3)~ $|f(z)|\leq(1+\frac{1}{(\alpha-1)2^{\alpha-1}})\frac{\|f\|_{B^{\alpha}}}{(1-|z|^{2})^{\alpha-1}}$,$\alpha>1$.

引理2.3 算子$uC_{\varphi}: Z^{\alpha}\rightarrow B^{\beta}$或 $Z_{0}^{\alpha}\rightarrow B^{\beta}$ 是紧的当且仅当 $uC_{\varphi}: Z^{\alpha}\rightarrow B^{\beta}$ 或 $Z_{0}^{\alpha}\rightarrow B^{\beta}$ 是有界的,且对 $Z^{\alpha}$ 或 $Z_{0}^{\alpha}$ 中的任意范数有界的函数序列 $\{f_{n}\}_{n\in N}$,$f_{n}$ 在 $D$ 上内闭一致收敛到0$(n\rightarrow \infty)$, 蕴含$\|uC_{\varphi}f_{n}\|\rightarrow 0$,$n\rightarrow \infty$.

利用引理2.1和引理2.2,仿造文献[1]的弱收敛定理(第2.4 节,29-30 页) 或文献[5]中引理3.7的证明过程可以证得. 具体略.


3 主要结果及证明

定理3.1 设$0<\alpha,\beta<\infty$,$\varphi$是$D$的全纯自映射,$u\in H(D)$,则下列表述等价

i)~ $uC_{\varphi}: Z^{\alpha}\rightarrow B^{\beta}$是有界的;

ii)~ $uC_{\varphi}: Z_{0}^{\alpha}\rightarrow B^{\beta}$是有界的;

iii) a)~ $0<\alpha<1$时,有$u\in B^{\beta}$,且

\begin{equation}%\tag{3.1} \sup_{z\in D}(1-|z^{2}|)^{\beta}|u(z)\varphi'(z)|<\infty, \end{equation} (3.1)
b)~ $\alpha=1$时,有$u\in B^{\beta}$,且
\begin{equation}%\tag{3.2} \sup_{z\in D}(1-|z^{2}|)^{\beta}|u(z)\varphi'(z)|\log\frac{2}{1-|\varphi(z)|^{2}} <\infty, \end{equation} (3.2)
c)~ $1<\alpha<2$时,有$u\in B^{\beta}$,且
\begin{equation}%\tag{3.3} \sup_{z\in D}\frac{(1-|z^{2}|)^{\beta}}{(1-|\varphi(z)|^{2})^{\alpha-1}}|u(z)\varphi'(z)|<\infty, \end{equation} (3.3)
d)~ $\alpha=2$时,有(3.3)式成立,且
\begin{equation}%\tag{3.4} \sup_{z\in D}(1-|z^{2}|)^{\beta}|u'(z)|\log\frac{2}{1-|\varphi(z)|^{2}} <\infty, \end{equation} (3.4)
e)~ $\alpha>2$时,有(3.3)式成立,且
\begin{equation}%\tag{3.5} \sup_{z\in D}\frac{(1-|z^{2}|)^{\beta}}{(1-|\varphi(z)|^{2})^{\alpha-2}}|u'(z)|<\infty. \end{equation} (3.5)

iii)$\Rightarrow$ i)~ 假设iii)中的条件成立,对于任意$z\in D$, 任意$f\in Z^{\alpha}$, \begin{eqnarray*} I&\triangleq & (1-|z|^{2})^{\beta} |(uC_{\varphi}f)'(z)|=(1-|z|^{2})^{\beta}|u'(z)f(\varphi(z))+u(z)f'(\varphi(z))\varphi'(z)|\nonumber\\ &\leq & (1-|z|^{2})^{\beta}|u'(z)||f(\varphi(z))|+(1-|z|^{2})^{\beta}|u(z)\varphi'(z)||f'(\varphi(z))|. \end{eqnarray*} 由引理2.1,当$\alpha>2$时,

\begin{equation}%\tag{3.6} I\leq \frac{2}{(\alpha-1)(\alpha-2)}\frac{(1-|z|^{2})^{\beta}}{(1-|\varphi(z)|)^{\alpha-2}}|u'(z)|\|f\|_{z^{\alpha}}+ \frac{2}{\alpha-1}\frac{(1-|z|^{2})^{\beta}}{(1-|\varphi(z)|)^{\alpha-1}}|u(z)\varphi'(z)|\|f\|_{Z^{\alpha}}. \end{equation} (3.6)
对(3.6)式两边取上确界并结合(3.3)和(3.5)式,可证得$uC_{\varphi}: Z^{\alpha}\Rightarrow B^{\beta}$是有界的.

对于$0<\alpha\leq2$的情况,类似可证.

i)$\Rightarrow$ ii)~ 显然成立.

ii)$\Rightarrow$ iii)~ 假设$uC_{\varphi}:Z^{\alpha}\Rightarrow B^{\beta}$是有界的.

情况a)实际上,当$0<\alpha<\infty$时,取$f=1\in Z_{0}^{\alpha}$,则有$u\in B^{\beta}$; 取$f=z\in Z_{0}^{\alpha}$,有 \begin{eqnarray*} \sup_{z\in D}(1-|z^{2}|)^{\beta}|u(z)\varphi'(z)+u'(z)\varphi(z)|<\infty, \end{eqnarray*} 由上式以及$\varphi$的有界性,有(3.1)式成立;

对于$1\leq\alpha<\infty$的情况,取$a\in D$,使得$\frac{1}{2}<|a|<1$,

情况b)当$\alpha=1$ 时,取 $$ f_{a}(z)=\frac{\overline{a}z-1}{\overline{a}} \bigg[\Big(1+\log\frac{2}{1-\overline{a}z}\Big)^{2}+1\bigg] \Big(\log\frac{2}{1-|a|^{2}}\Big)^{-1}\in Z_{0}, $$ $$ f_{a}(0)=-\frac{1}{\overline{a}}[(1+\log2)^{2}+1]\Big(\log\frac{2}{1-|a|^{2}}\Big)^{-1}, $$ 则 $$ f_{a}(z)=\Big(\log\frac{2}{1-\overline{a}z}\Big)^{2}\Big(\log\frac{2}{1-|a|^{2}}\Big)^{-1}, $$ $$ f'_{a}(0)=(\log2)^{2}\Big(\log\frac{2}{1-|a|^{2}}\Big)^{-1}, $$ $$ f''_{a}(z)=\frac{2\overline{a}}{1-\overline{a}z}\Big(\log\frac{2}{1-\overline{a}z}\Big) \Big(\log\frac{2}{1-|a|^{2}}\Big)^{-1}, $$ $$ |f''_{a}(z)|\leq\frac{2}{1-|z|}\Big(\log\frac{2}{1-|a|}+2\pi\Big) \Big(\log\frac{2}{1-|a|^{2}}\Big)^{-1}\leq\frac{2}{1-|z|}\Big(1+\frac{2\pi}{\log4}\Big), $$ $$ \sup_{\frac{1}{\sqrt2}<|a|<1}\|f_{a}\|_{Z}<M, $$ 其中$M=\frac{\sqrt{2}}{\log4}[(1+\log2)^{2}+1]+\frac{\log2}{2}+4(1+\frac{2\pi}{\log4})$, 所以$f_{a}\in Z$. 而且,因$f_{a}$在$|z|<\frac{1}{|a|}$ 内解析,从而$f'_{a}$在闭圆$\overline{D}={|z|\leq1}$内解析,故$f_{a}\in Z_{0}$.\\ 所以$\forall\lambda\in D$,使得$\frac{1}{\sqrt2}<\varphi(\lambda)<1$,有 \begin{eqnarray*} M\|uC_{\varphi}\|&\geq&\|f_{\varphi(\lambda)}\|_{Z}\|uC_{\varphi}\|\geq\|uC_{\varphi}f_{ \varphi(z)}\|_{B^{\beta}}\\ &\geq&-M(1-|\lambda|^{2})^{\beta}|u'(\lambda)|+(1-|\lambda|^{2})^{\beta}|u(\lambda)\varphi'(\lambda)|\log\frac{2}{1-|\varphi(\lambda)|^{2}}, \end{eqnarray*} 所以有

\begin{equation}%\tag{3.7} \sup_{\frac{1}{\sqrt2}<\varphi(\lambda)<1}(1-|\lambda|^{2})^{\beta}|u(\lambda)\varphi'(\lambda)|\log\frac{2}{1-|\varphi(\lambda)|^{2}}. \end{equation} (3.7)
对$\forall\lambda\in D$,使得$\varphi(\lambda)<\frac{1}{\sqrt2}$,有
\begin{equation}%\tag{3.8} \sup_{z\in D}(1-|z^{2}|)^{\beta}|u(z)\varphi'(z)|\log\frac{2}{1-|\varphi(z)|^{2}} <\sup_{z\in D}(1-|z^{2}|)^{\beta}|u(z)\varphi'(z)|\log4<\infty. \end{equation} (3.8)
由式(3.1),(3.7),(3.8),得到式(3.2);

情况c)对于$1<\alpha<\infty$,取 $$ f_{a}(z)=\frac{1}{\overline{a}} \bigg[\frac{(1-|a|^{2})^{2}}{(1-\overline{a}z)^{\alpha}}-\frac{1-|a|^{2}}{(1-\overline{a}z)^{\alpha-1}}\bigg]\in Z_{0}^{\alpha}, $$ $$ f_{a}(0)=\frac{1}{\overline{a}}[(1-|a|^{2})^{2}-(1-|a|^{2})], $$ $$ f'_{a}(z)=\frac{\alpha(1-|a|^{2})^{2}} {(1-\overline{a}z)^{\alpha+1}}-\frac{(\alpha-1)(1-|a|^{2})}{1-\overline{a}z}, $$ $$ f'_{a}(0)=\alpha(1-|a|^{2})^{2}-(\alpha-1)(1-|a|^{2}), $$ $$ f''_{a}(z)=\frac{\alpha(\alpha+1)\overline{a}(1-|a|^{2})^{2}}{(1-\overline{a}z)^{\alpha+2}} -\frac{(\alpha-1)\alpha\overline{a}(1-|a|^{2})}{(1-\overline{a}z)^{\alpha+1}}, $$ $$ |f''_{a}(z)|\leq\alpha(\alpha+1) \bigg|\frac{(1-|a|^{2})^{2}}{(1-|\overline{a}|^{2})(1-|z|)^{\alpha}}\bigg| +\alpha(\alpha-1)\bigg| \frac{1-|a|^{2}}{(1-|\overline{a}|)(1-|z|)^{\alpha}}\bigg| \leq\frac{6\alpha^{2}+2\alpha}{(1-|z|)^{\alpha}}, $$ $$ \|f_{a}\|_{Z^{\alpha}}\leq M, $$ 其中$M=\frac{\sqrt{2}}{2}+\frac{3\alpha-2}{4}+2^{\alpha}(6\alpha^{2}+2\alpha)$, 所以$f_{a}\in Z^{\alpha}$. 而且类似情况b)的证明可得式(3.3); 情况d)$\alpha=2$,令$f_{a}(z)=\log\frac{2}{1-\overline{a}z}\in Z_{0}^{\alpha}$, $f_{a}(0)=\log2$,则 $$ f'_{a}(z)=\frac{\overline{a}}{1-\overline{a}z},\quad f'_{a}(0)=\overline{a}, \quad f''_{a}(z)=\frac{(\overline{a})^{2}}{(1-\overline{a}z)^{2}}, $$ $$ |f''_{a}(z)|<\frac{1}{(1-|z|^{2})},\quad \sup_{\frac{1}{\sqrt{2}}<|a|<1}{\|f_{a}\|_{Z^{\alpha}}}\leq M, $$ 其中$M=\log2+5$,$f_{a}\in Z^{\alpha}$. 结合(3.3)式,类似于情况b)可证得式(3.4)成立; 情况e) $\alpha>2$,令 $$ f_{a}{z}=\frac{1-|a|^{2}}{(1-\overline{a}z)^{\alpha-1}}-\frac{(1-|a|^{2})^{\alpha}}{2(1-\overline{a}z)^{2\alpha-2}}\in Z_{0}^{\alpha}, $$ $$ f_{a}(0)=1-|a|^{2}-(1-|a|^{2})^{\alpha}, $$ $$f'_{a}(z)=\frac{(\alpha-1)(1-|a|^{2})\overline{a}}{(1-\overline{a}z)^{\alpha}}-\frac{(\alpha-1)(1-|a|^{2}) ^{\alpha}\overline{a}}{(1-\overline{a}z)^{2\alpha-1}}, $$ $$ f'_{a}(0)=(\alpha-1)(1-|a|^{2})\overline{a}-(\alpha-1)(1-|a|^{2})^{\alpha}\overline{a}, $$ $$ f''_{a}(z)=\frac{(\alpha-1)\alpha(1-|a|^{2})(\overline{a})^{2}}{(1-\overline{a}z)^{\alpha+1}} -\frac{(\alpha-1)(2\alpha-1)(1-|a|^{2})^{\alpha}(\overline{a})^{2}}{(1-\overline{a}z)^{2\alpha}}, $$ $$ |f''_{a}(z)|<\frac{\alpha( \alpha+1)+(\alpha-1)(2\alpha-1)2^{\alpha-1}}{(1-|z|)^{\alpha}}, $$ $$ \sup_{\frac{1}{\sqrt{2}}<|a|<1}{\|f_{a}\|_{Z^{\alpha}}}\leq M, $$ 其中$M=\alpha+2^{\alpha}(\alpha+1)+(\alpha-1)(2\alpha-1)$,同样类似情况b) 的证明, 可得(3.5)式,定理3.1证毕.

定理3.2 设$0<\alpha,\beta<\infty$,$\varphi$是$D$的全纯自映射,$u\in H(D)$,则下列表述等价

i)~ $uC_{\varphi}:Z^{\alpha}\rightarrow B^{\beta}$是紧的;

ii)~ $uC_{\varphi}:Z_{0}^{\alpha}\rightarrow B^{\beta}$是紧的;

iii) a)~ $0<\alpha<1$时,有

\begin{equation}%\tag{3.9} \lim_{|\varphi(z)|\rightarrow 1}(1-|z^{2}|)^{\beta}|u'(z)|=0 \end{equation} (3.9)
\begin{equation}%\tag{3.10} \lim_{|\varphi(z)|\rightarrow 1}(1-|z^{2}|)^{\beta}|u(z)||\varphi'(z)|=0; \end{equation} (3.10)
b)~ $\alpha=1$时,有(3.9)式成立,且
\begin{equation}%\tag{3.11} \lim_{|\varphi(z)|\rightarrow 1}(1-|z^{2}|)^{\beta}|u(z)||\varphi'(z)|\log\frac{2}{1-|\varphi(z)|^{2}}=0; \end{equation} (3.11)
c)~ $1<\alpha<2$时,有(3.9)式成立,且
\begin{equation}%\tag{3.12} \lim_{|\varphi(z)|\rightarrow 1}\frac{(1-|z^{2}|)^{\beta}}{(1-|\varphi(z)|^{2})^{\alpha-1}}|u(z)||\varphi'(z)|=0; \end{equation} (3.12)
d)~ $\alpha=2$时,有(3.12)式成立,且
\begin{equation}%\tag{3.13} \lim_{|\varphi(z)|\rightarrow 1}(1-|z^{2}|)^{\beta}|u'(z)|\log\frac{2}{1-|\varphi(z)|^{2}} =0; \end{equation} (3.13)
e)~ $\alpha>2$时,有(3.12)式成立,且
\begin{equation}%\tag{3.14} \lim_{|\varphi(z)|\rightarrow 1}\frac{(1-|z^{2}|)^{\beta}}{(1-|\varphi(z)|^{2})^{\alpha-2}}|u'(z)|=0. \end{equation} (3.14)

iii)$\Rightarrow$ i)~ 先考虑情况e),由式(3.12),(3.14) 易证(3.3),(3.5)式成立,故由定理3.1知$uC_{\varphi}:Z^{\alpha}\rightarrow B^{\beta}$ 是有界的. 为了证明$uC_{\varphi}$ 是紧的,对于$\forall \|f_{n}\|_{Z^{\alpha}}\leq1$,且$f_{n}(z)$ 在$D$内闭一致收敛到$0(n\rightarrow\infty)$,由引理2.3,只需证明$\|uC_{\varphi}f_{n}\|\rightarrow 0$,$n\rightarrow \infty$.\\ 由(3.12)和(3.14)式,对$\forall \varepsilon>0,\exists \delta\in (0,1)$,使得$\delta<\varphi(z)<1$时,有 $$ \frac{(1-|z^{2}|)^{\beta}}{(1-|\varphi(z)|^{2})^{\alpha-1}}|u(z)||\varphi'(z)|<\varepsilon; \qquad \frac{(1-|z^{2}|)^{\beta}}{(1-|\varphi(z)|^{2})^{\alpha-2}}|u'(z)|<\varepsilon. $$ 由上面两式以及引理2.1有 \begin{eqnarray*} &&\|uC\varphi(f_{n})\|_{B^{\beta}}\\ &=&\sup_{z\in D}(1-|z|^{2})^{\beta}|uC\varphi(f_{n})(z)|+|u(0)f_{n}(\varphi(0))|\\ &\leq&\sup_{z\in D;|\varphi(z)|\leq\delta}(1-|z|^{2})^{\beta}|u'(z)f_{n}(\varphi(z))|+\sup_{z\in D;\delta<|\varphi(z)|\leq1}(1-|z|^{2})^{\beta}|u'(z)f_{n}(\varphi(z))|\\ &&+\sup_{z\in D;|\varphi(z)|\leq\delta}(1-|z|^{2})^{\beta}|u(z)\varphi'(z)f'_{n} (\varphi(z))|\\ &&+\sup_{z\in D;\delta<|\varphi(z)|\leq1}(1-|z|^{2})^{\beta}|u(z)\varphi'(z)f'_{n}(\varphi(z))| +|u(0)f_{n}(\varphi(0))|\\ &=&L\sup_{|\omega|\leq\delta}|f'_{n}(\varphi(z))|+\frac{\varepsilon_{1}2^{\alpha}}{(\alpha-1)M}\|f\|_{Z^{\alpha}}+|u(0)f_{n}(\varphi(0))|, \end{eqnarray*} 其中$L=\sup\limits_{z\in D}(1-|z^{2}|)^{\beta}|u(z)||\varphi'(z)|$. 由(3.12)式知(3.10)式成立,从而$L<\infty$. 又因为在$D$上$f_{n}$内闭一致收敛到0, 特别地,在圆盘$|\omega|\leq\delta$ 上有$f_{n}$内闭一致收敛到0; 由柯西高阶导数公 式及估值定理可知当$n\rightarrow\infty$时,$f'_{n}$在$D$上内闭一致收敛到到0,特别地, 在圆盘$|\omega|\leq\delta$上有$f'_{n}$一致收敛到0; 显然, 有$|u(0)f_{n}(\varphi(0))|\rightarrow 0$. 由这些事实,当$n\rightarrow\infty$时, 有$\lim\limits_{n\rightarrow\infty}\|uC_{\varphi}f_{n}\|_{B^{\beta}}=0$. 所以对$\forall\varepsilon>0$,$\limsup\limits_{n\rightarrow\infty} \|uC_{\varphi}f_{n}\|_{B^{\beta}}=0$. 所以$uC_{\varphi}: Z^{\alpha}\rightarrow B^{\beta}$ 是紧的. 对于$0<\alpha\leq2$的情况,类似可证.

i)$\Rightarrow$ii)~ 显然.

ii)$\Rightarrow$iii)~ 情况a)当$0<\alpha<\infty$时,假设$uC_{\varphi}: Z_{0}^{\alpha}\rightarrow B^{\beta}$是紧的,则类似定理3.1,有$\sup\limits_{n\in N}\|f_{n}\|_{Z^{\alpha}}\leq M<\infty$, 当$n\rightarrow\infty$时,$f_{n}$ 内闭一致收敛到0.

因为$uC_{\varphi}: Z_{0}^{\alpha}\rightarrow B^{\beta}$是紧的, 也就是$\limsup\limits_{n\rightarrow\infty}\|uC_{\varphi}f_{n}\|_{B^{\beta}}=0$, 令$\{Z_{n}\}_{n\in N}$ 是$D$中一序列,$|\varphi(z_{n})\rightarrow1|$,$n\rightarrow\infty$,取 $$ f_{n}(z)=3\Big(\log\frac{2}{1-|\overline{\varphi(z_{n})}|^{2}}\Big)^{-1} \Big(\log\frac{2}{1-\overline{\varphi(z_{n})}z}\Big)^{2} -2\Big(\log\frac{2}{1-|\overline{\varphi(z_{n})}|^{2}}\Big)^{-2} \Big(\log\frac{2}{1-\overline{\varphi(z_{n})}z}\Big)^{3}, $$ 则$f_{n}(z)\in Z_{0}^{\alpha}$,且 $$ \|uC_{\varphi}f_{n}\|_{B^{\beta}}\geq (1-|z_{n}^{2}|)^{\beta}|u'(z_{n})|\log\frac{2}{1-|\varphi(z_{n})|^{2}}, $$ 因为$\varphi(z_{n})<1$,所以(3.9) 式成立. 另一方面,取 $$ f_{n}(z)=\frac{\overline{\varphi(z_{n})}z-1}{\overline{\varphi(z_{n})}} \bigg[\Big(1+\log\frac{2}{1-\overline{\varphi(z_{n})}z}\Big)^{2}+1\bigg] \Big(\log\frac{2}{1-|\varphi(z_{n})|^{2}} \Big)^{-1}\in Z_{0}^{\alpha}, $$ \begin{eqnarray}%\tag{3.15} &&\|uC_{\varphi}f_{n}\|_{B^{\beta}} \geq (1-|z_{n}^{2}|)^{\beta}|u(z_{n})\varphi'(z_{n})|\log\frac{2}{1-|\varphi(z_{n})|^{2}} \nonumber\\ &&-\frac{1-|\varphi(z_{n})|^{2}}{|\varphi(z_{n})|} \bigg[\Big(1+\log\frac{2}{1-\overline{\varphi(z_{n})}z}\Big)^{2}+1\bigg] \Big(\log\frac{2}{1-|\varphi(z_{n})|^{2}}\Big)^{-1} (1-|z_{n}^{2}|)^{\beta}|u'(z_{n})|. \qquad \end{eqnarray} 因为$\lim\limits_{x\rightarrow 1}\frac{1-x^{2}}{x}[(1+\log\frac{2}{1-x^{2}})^{2}+1](\log\frac{2}{1-x^{2}})^{-1}=0$,由(3.9)和(3.15)式可知 $$ \lim_{|\varphi(z)|\rightarrow 1}(1-|z^{2}|)^{\beta}|u(z)||\varphi'(z) |\log\frac{2}{1-|\varphi(z)|^{2}}=0 $$ 成立.

同样因为$|\varphi(z_{n})|<1$,有(3.10)式成立.

情况b)当$\alpha=1$时,(3.9)式成立,取 $$ f_{n}(z)=\frac{\overline{\varphi(z_{n})}z-1}{\overline{\varphi(z_{n})}} \bigg[\Big(1+\log\frac{2}{1-\overline{\varphi(z_{n})}z}\Big)^{2}+1\bigg] \Big(\log\frac{2}{1-|\varphi(z_{n})|^{2}} \Big)^{-1}\in Z_{0}^{\alpha}, $$ 类似情况a),由(3.9),(3.15)式可知(3.11)式成立.

情况c)当$1<\alpha<\infty$时,(3.9)式成立,取 $$ f_{n}(z)=\frac{1}{\overline{\varphi(z_{n})}}\bigg[\frac{(1-|\varphi(z_{n})|^{2})^{2}}{(1-\overline{\varphi(z_{n})}z)^{\alpha}}-\frac{1-|\varphi(z_{n})|^{2}}{(1- \overline{\varphi(z_{n})}z)^{\alpha-1}}\bigg]\in Z_{0}^{\alpha}, $$ 则类似情况a)的证明,有 $$ \limsup_{n\rightarrow\infty}\|uC_{\varphi}f_{n}\|_{B^{\beta}}=0,\quad \|uC_{\varphi}f_{n}\|_{B^{\beta}}\geq \frac{(1-|z^{2}|)^{\beta}}{(1-|\varphi(z)|^{2})^{\alpha-1}}|u(z)\varphi'(z)|, $$ 由上式可得(3.12)式成立;

情况d) $\alpha=2$时,易知(3.12)式成立,取 \begin{eqnarray*} f_{n}(z)&=&3\Big(\log\frac{2}{1-|\overline{\varphi(z_{n})}|^{2}}\Big)^{-1} \Big(\log\frac{2}{1-\overline{\varphi(z_{n})}z}\Big)^{2} -2\Big(\log\frac{2}{1-|\overline{\varphi(z_{n})} |^{2}}\Big)^{-2}\Big(\log\frac{2}{1-\overline{\varphi(z_{n})}z}\Big)^{3} \\ &\in & Z_{0}^{\alpha}, \end{eqnarray*} 类似情况a)的证明,$\limsup\limits_{n\rightarrow\infty}\|uC_{\varphi}f_{n}\|_{B^{\beta}}=0$,所以 $$ \|uC_{\varphi}f_{n}\|_{B^{\beta}}\geq (1-|z^{2}|)^{\beta}|u'(z)|\log\frac{2}{1-|\varphi(z)|^{2}}, $$ 所以(3.13)式成立;

情况e)$\alpha>2$时,易知(3.12)式成立,下面取 $$ f_{n}(z)=\frac{(1-|\varphi(z_{n})|^{2})^{2}}{(1-\overline{\varphi(z_{n})}z)^{\alpha-1}}-\frac{(1-|\varphi(z_{n})|^{2})^{\alpha}} {(1-\overline{\varphi(z_{n})}z)^{2\alpha-2}}\in Z_{0}^{\alpha}. $$ 类似情况a)的证明,有$\limsup\limits_{n\rightarrow\infty}\|uC_{\varphi}f_{n}\|_{B^{\beta}}=0$,而 $$ \|uC_{\varphi}f_{n}\|_{B^{\beta}}\geq (1-|z^{2}|)^{\beta}|u'(z)|\frac{1}{2(1-|\varphi(z)|^{2})^{\alpha-2}}+(2\alpha-1)\frac{(1-|z^{2}|)^{\beta}}{(1-|\varphi(z)|^{2})^{\alpha-1}}|u(z)\varphi'(z)|, $$ 所以由(3.12)式证得(3.14)式成立. 定理3.2证毕.

推论3.1 设$0<\alpha,\beta<\infty$,$\varphi$是$D$的全纯自映射,$u\in H(D)$, 当$0<\alpha\leq1$时,$uC_{\varphi}: Z^{\alpha}\rightarrow B^{\beta}$ 或者 $uC_{\varphi}:Z_{0}^{\alpha}\rightarrow B^{\beta}$ 是紧的充分且必要条件为

i)~ $\lim\limits_{|\varphi(z)|\rightarrow 1}(1-|z^{2}|)^{\beta}|u'(z)|\log\frac{2}{1-|\varphi(z)|^{2}} =0$,

ii)~ $\lim\limits_{|\varphi(z)|\rightarrow 1}(1-|z^{2}|)^{\beta}|u(z)||\varphi'(z)|\log\frac{2}{1-|\varphi(z)|^{2}}=0$.

参考文献
[1] Shapiro J H. Composition Operators and Classical Function Theory. New York: Spring-Verlag, 1993
[2] Zhu Kehe. Operator Theory in Function Spaces. New York: Marcel Dekker, 1990
[3] Cowen C, MacCluer B. Composition Operators on Spaces of Analytic Functions. Boca Raton: CRC Press, 1995
[4] Madigan K, Matheson A. Compact composition operators on the Bloch space. Trans Amer Math Soc, 1995, 347(7): 2679-2687
[5] Ohno S, Stroethoff K, Zhao R. Weighted composition operators between Bloch-type spaces. Rocky Mountain J Math, 2003, 33(1): 191-215
[6] 张学军. p-Bloch空间上的复合算子和加权复合算子. 数学年刊(A辑), 2003, 42(6): 711-720
[7] Xiao Jie. Composition operators associated with Bloch-type spaces. Complex Variables Theory Appl, 2001, 46(2): 109-121
[8] Esmaeili K, Lindstrom M. Weighted composition operators between Zygmund type spaces and their essential norms. Integral Equations and Operator Theory, 2013, 75(4): 473-490
[9] Ye Shanli, Hu Qingxiao. Weighted composition operators on the Zygmund space. Abstr Appl Anal Volume 2012, Article ID 462482, 18 pages
[10] Li Songxiao, Stevic S. Weighted composition operators from Zygmund spaces into Bloch spaces. Applied Mathematics and Computation, 2008, 206(2): 825-831
[11] 戴济能, 欧阳才衡. 单位球上Zygmund 空间到α-Bloch 空间的复合算子. 武汉大学学报(理学版), 2010, 56A(4): 373-377
[12] Dai Jineng, Ouyang Caiheng. Composition operators between Bloch-type spaces and Zygmund spaces in the unit ball. Proc Indian Acad Sci (Math Sci), 2011, 121(3): 327-337
[13] Dai Jineng, Ouyang Caiheng. Composition operators between Bloch-type spaces in the unit ball. Acta Mathematica Scientia, 2014, 34B(1): 73-81
[14] 刘竟成, 张学军. 单位球上小Bloch型空间之间的加权复合算子. 数学物理学报, 2010, 30A(4): 894-907
[15] 于燕燕, 刘永民. 从混合模型到Bloch-型空间微分算子与乘子的积. 数学物理学报, 2012, 32A(1): 68-79