Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
  数学物理学报  2015, Vol. 35 Issue (4): 683-694   PDF (361KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
朱思峰1
王朝君1
崔艳艳1
刘浩2
螺形映照的新子族
王朝君1 , 崔艳艳1, 刘浩2, 朱思峰1    
1 周口师范学院 数学与统计学院, 河南 周口 466001;
2 河南大学 数学与信息科学学院, 河南 开封 475001
摘要: 定义了螺形函数的新子族, 即ρ次椭圆星形函数和ρ次椭圆形β型螺形函数,并将这些定义推广到多复变数空间中, 得到推广的Roper-Suffridge算子在不同空间不同区域上保持ρ次椭圆星形映照和ρ次椭圆形β型螺形映照的性质, 由此可以在多复变数空间中构造出许多ρ次椭圆形β型螺形映照. 所得结论丰富了对螺形映照子族及推广的Roper-Suffridge算子的研究.
关键词: Roper-Suffridge算子     星形映照     螺形映照     Reinhardt域    
New Subclasses of Spirallike Mappings
Wang Chaojun1 , Cui Yanyan1, Liu Hao2, Zhu Sifeng1    
1 College of Mathematics and Statistics, Zhoukou NormalUniversity, Henan Zhoukou 466001;
2 College ofMathematics and Information Science, Henan University, Henan Kaifeng 475001
Abstract: In this paper, we introduce some new subclasses of spirallike functions, namely elliptical starlike functions of order ρ, elliptical and spirallike functions of type β and order ρ. We extend the new definitions and obtain that the generalized Roper-Suffridge operators preserve the properties of the mappings defined in this paper on different domains in different spaces, thus many elliptical and spirallike mappings of type β and order ρ can be constructed in several complex variables. The conclusions enrich the research of subclasses of spirallike mappings and generalized Roper-Suffridge operators.
Key words: Roper-Suffridge operators     Starlike mappings     Spirallike mappings     Reinhardt domains    

1 引言

在单复变几何函数论中有许多优美的结果. 很自然的,人们讨论是否可以将 这些结论推广到多复变数中. 1933年,Cartan[1]建议考虑具有特殊几何性质的双全纯映照, 例如星形映照及凸映照. 之后许多人开始研究这两类映照. 到目前为止, 关于星形映照和凸映照已经有了许多很好的结论. 许多学者开始讨论它们的子族.

Rønning在1991年引入了抛物星形函数的概念.

定义 1.1 (Rønning F[2])设f(z)是单位圆盘D上正规化的解析函数,若 |zf(z)f(z)1|<zf(z)f(z)α,  zD,α[0,1], 则称f(z)D上的抛物星形函数.

1993年Rønning在研究单位圆盘D上的一致凸函数的性质时将抛物星形函数的定义做了进一步的修改.

定义 1.2 (Rønning F[3])设f(z)是单位圆盘D上正规化的解析函数,若 |zf(z)f(z)1|<zf(z)f(z),  zD, 则称f(z)D上的抛物星形函数.

后来Ali 对文献[1]中定义的参数做了适当的修改,定义了ρ次抛物星形函数(ρ[0,1)).

定义 1.3 (Ali R M[4])设f(z)是单位圆盘D上正规化的解析函数,若 |zf(z)f(z)1|<(12ρ)+zf(z)f(z),  zD,ρ(0,1), 则称f(z)D上的ρ次抛物星形函数.

Hamada,Honda,Kohr将Ali的定义推广到Cn中单位球Bn[5],冯淑霞,张晓飞和陈慧勇[6]对Ali所给出的抛物星形函数和ρ次的抛物星形函数做了合理的修改, 引入了抛物形β型螺形函数和 ρ次的抛物形β型螺形函数的定义,并讨论了在不同空间上Roper-Suffridge算子保持相应的抛物形β型螺形映照和 ρ次的抛物形β型螺形映照的性质.

定义 1.4 (冯淑霞,张晓飞,陈慧勇[6]) 设f(z)是单位圆盘D上正规化的解析函数,若 β(π/2,π/2),cosβ>1/(1+ρ),且 |eiβf(z)zf(z)(1isinβ)|<(12ρ)+(eiβf(z)zf(z)). 则称f(z)D上的ρ(0,1)次抛物形β型螺形函数.

1995年Roper-Suffridge算子[7]的引入使得我们可以由单复变中具有特殊几 何性质的双全纯映照构造多复变中相应的映照,因此许多学者开始在不同空间的不同区域 上研究Roper-Suffridge 延拓算子. 到目前为止关于Roper-Suffridge延拓算子已经有了许多很好的结论[8, 9, 10, 11, 12].

本文是对文献[6]中定义的抛物形β型螺形函数和 ρ次的抛物形β型螺形函数做适当的修改,从而定义螺形映照的新子族. 在第2章,从映照的几何意义出发,给出单复变中ρ次椭圆星形函数和ρ次椭圆形β型 螺形函数的定义,并将它们推广到多复变数不同空间的不同区域中. 在第3--5章,本文 分别讨论了在Cn中单位球Bn上、在复Banach空间及复Hilbert 空间单位球上、 在Reinhardt域上推广的Roper-Suffridge延拓算子保持ρ次椭圆形β型螺形性.

2 ρ次椭圆形β型螺形函数

定义 2.1f(z)是单位圆盘D上正规化的解析函数,ρ(0,1),

|f(z)zf(z)1|<ρf(z)zf(z),zD. (2.1)
则称f(z)Dρ次椭圆星形函数.

由定义2.1知f(z)zf(z)>0,此时f(z)是星形函数,从而是双全纯的. (2.1)式表明f(z)zf(z)将单位圆盘映为右半平面内由椭圆 {w=u+iv|(u11ρ2)+v21ρ2<(ρ1ρ2)2}所围成的椭圆区域,并且经简单计算可知该区域相对于 ζ=11ρ2是星形域,因此这里我们称这类域为椭圆星形域. 而螺形函数是星形函数的一种扩充函数,那么是否可以将ρ次椭圆星形函数与螺形函 数类结合起来呢? 若将定义2.1中的不等式改变为 |eiβf(z)zf(z)(1isinβ)|<ρ[eiβf(z)zf(z)],β(π2,π2),zD. 则显然有[eiβf(z)zf(z)]>0,此时f(z)是螺形函数, 从而也是双全纯的.经计算可知eiβf(z)zf(z)将单位 圆盘映为右半平面内由椭圆 {w=u+iv|(u11ρ2)+(v+sinβ)21ρ2<(ρ1ρ2)2}所围成的椭圆区域中,并且该区域相对于 ζ=11ρ2isinβ是星形域. 又由于当z0eiβf(z)zf(z)eiβ,于是eiβ在上述椭圆区域, 这就要求cosβ>11+ρ. 由此我们给出如下螺形函数的子类.

定义 2.2f(z)是单位圆盘D上正规化的解析函数, ρ(0,1),β(π2,π2), cosβ>11+ρ,且 |eiβf(z)zf(z)(1isinβ)|<ρ[eiβf(z)zf(z)],zD. 则称f(z)Dρ次椭圆形β型螺形函数.

在定义2.2中若β=0,即为定义2.1.

定理 2.3 ρ(0,1), β(π/2,π/2),cosβ>1/(1+ρ),且

f(z)=zexpz0{eiβ[1isinβ+aπ2(lnw(x))2]11}dxx, (2.2)
其中 a4π2ρ4(1ρ)(ln2)2+(1+ρ)π2, w(x)=2i(b¯bx1x+1)(b¯bx1x1)1,b=(i+2i2)2, 对数函数的分支选取主值支. 根式函数选取使得 (i+2i2)2=i+2i2的分支. 则f(z)D上正规化的ρ次椭圆形β型螺形函数.

w1(z)=b¯bz1z,w2(z)=w1(z)+1w1(z)1,w(z)=2iw2(z),zD. w1(z)将单位圆盘映到上半平面,且0被映成b. w2(z)将上半平面映成单位圆盘的上半部分,且b被映成i/2. w(z) 将单位圆盘的上半部分映成半径为2的圆盘的 右半部分,且i/2被映成1. 所以|w|<2argw(π/2,π/2). 由(2.2)式有 f(z)=expz0{eiβ[1isinβ+aπ2(lnw(x))2]11}dxxeiβ1isinβ+aπ2(lnw(z))2. f(z)zf(z)=eiβ(1isinβ)+eiβaπ2(lnw(z))2. 于是

|eiβf(z)zf(z)(1isinβ)|=aπ2(lnw)2=aπ2[(ln|w|)2+(argw)2], (2.3)
ρ[eiβf(z)zf(z)]=ρ+ρaπ2(lnw)2=ρ+ρaπ2[(ln|w|)2(argw)2]. (2.4)
由(2.3)及(2.4)式可得 |eiβf(z)zf(z)(1isinβ)|ρ[eiβf(z)zf(z)]=(1ρ)aπ2(ln|w|)2+(1+ρ)aπ2(argw)2ρ. 由于|w|<2,argw(π/2,π/2),且 a4π2ρ4(1ρ)(ln2)2+(1+ρ)π2, |eiβf(z)zf(z)(1isinβ)|ρ[eiβf(z)zf(z)]<0.

又显然f(z)是正规化的, 由定义2.2可知f(z)D上正规化的ρ次椭圆形β型螺形函数.

注 2.4 若在定理2.3中令β=0,则有 f(z)=zexpz0{[1+aπ2(lnw(x))2]11}dxx D上的ρ次椭圆星形函数.

如果将定义2.1推广到不同空间不同区域上,则有以下定义.

定义 2.5F(z)Bn上正规化的双全纯映照, ρ(0,1),β(π2,π2), cosβ>11+ρ, |eiβJ1F(z)F(z),z(1isinβ)z2|<ρRe{eiβJ1F(z)F(z),z},zBn, 则称F(z)Bnρ次椭圆形β型螺形映照.

定义 2.6F(x)是Banach空间单位球B上正规化的双全纯映照, ρ(0,1), β(π2,π2), cosβ>11+ρ,且 |eiβ1xTx[(DF(x))1F(x)](1isinβ)|<ρ{eiβ1xTx[(DF(x))1F(x)]}, xB, 则称F(x)Bρ次椭圆形β型螺形映照.

定义 2.7F(z)是有界完全Reinhardt域Ω上正规化的局部双全纯映照, ρ(z)表示Ω上的Minkowski泛函,ρ(0,1), β(π2,π2), cosβ>11+ρ,且 |eiβ2ρ(z)ρz(z)J1F(z)F(z)(1isinβ)|<ρ[eiβ2ρ(z)ρz(z)J1F(z)F(z)], 则称 F(z)Ω上的ρ次椭圆形β型螺形映照.

3 Cn中单位球Bn上的情形

定理3.1fj(1jn)D上正规化的ρ次椭圆形β型螺形函数,ρ(0,1),β(π2,π2), cosβ>11+ρ, F(z)=(f1(z1),f2(z2),,fn(zn)), F(z)Cn中单位球Bn上正规化的ρ次椭圆形β型螺形映照.

由于fj(1jn)D上正规化的ρ次椭圆形β型螺形函数,则 |eiβfj(zj)zjfj(zj)(1isinβ)|<ρ[eiβfj(zj)zjfj(zj)], F(z)的表达式可知F(z)是正规化的,且 |eiβJ1F(z)F(z),z(1isinβ)z2|=|eiβnj=1|zj|2fj(zj)zjfj(zj)(1isinβ)nj=1|zj|2|=nj=1|zj|2|eiβfj(zj)zjfj(zj)(1isinβ)|<ρnj=1|zj|2[eiβfj(zj)zjfj(zj)]=ρ{eiβJ1F(z)F(z),z}, 由定义2.5知F(z)Cn中单位球Bn上正规化的ρ次椭圆形β型螺形映照.

定理3.2f(z1)D上正规化的ρ次椭圆形β型螺形函数,ρ(0,1), β(π2,π2), cosβ>11+ρ,且 F(z)=(f(z1),(f(z1)z1)β2z2,,(f(z1)z1)βnzn),zBn, 其中βj[0,1],幂级数取分支使得(f(z1)z1)βjz1=0=1(j=2,,n), 则F(z)Cn中单位球Bn上的ρ次椭圆形β型螺形映照.

由于f(z1)D上正规化的ρ次椭圆形β型螺形函数,则 |eiβf(z1)z1f(z1)(1isinβ)|<ρ[eiβf(z1)z1f(z1)], 又由F(z)的表达式经简单计算可知F(z)是正规化的,且 J1F(z)F(z)=((f(z1)f(z1)),,zj(1βj+βjf(z1)z1f(z1)),),2jn, J1F(z)F(z),z=|z1|2f(z1)z1f(z1)+nj=2|zj|2(1βj+βjf(z1)z1f(z1)), |eiβJ1F(z)F(z),z(1isinβ)z2|=||z1|2[eiβf(z1)z1f(z1)(1isinβ)]+nj=2|zj|2βj[eiβf(z1)z1f(z1)(1isinβ)]+nj=2|zj|2βj(1isinβ)+nj=2|zj|2eiβ(1βj)nj=2(1isinβ)|zj|2|=||z1|2[eiβf(z1)z1f(z1)(1isinβ)]+nj=2|zj|2βj[eiβf(z1)z1f(z1)(1isinβ)]+nj=2(cosβ1)(1βj)|zj|2||z1|2|eiβf(z1)z1f(z1)(1isinβ)|+nj=2|zj|2βj|eiβf(z1)z1f(z1)(1isinβ)|+nj=2(1cosβ)(1βj)|zj|2<(|z1|2+nj=2|zj|2βj)ρ[eiβf(z1)z1f(z1)]+nj=2(1cosβ)(1βj)|zj|2, ρ{eiβJ1F(z)F(z),z}=ρ{eiβ|z1|2f(z1)z1f(z1)+eiβnj=2|zj|2(1βj+βjf(z1)z1f(z1))}=ρ{|z1|2[eiβf(z1)z1f(z1)]+nj=2|zj|2[eiβ((1βj)+βjf(z1)z1f(z1))]}=ρ(|z1|2+nj=2βj|zj|2)[eiβf(z1)z1f(z1)]+ρnj=2cosβ(1βj)|zj|2, 于是当cosβ>11+ρ时有 |eiβJ1F(z)F(z),z(1isinβ)z2|<ρ{eiβJ1F(z)F(z),z}, 由定义2.5知F(z)Cn中单位球Bn上正规化的ρ次椭圆形β型螺形映照.

4 复Banach空间及复Hilbert空间单位球上的情形

以下X表示复Banach空间,B={xX:x<1}表示X中单位球,XX的对偶空间, 对任意的xX{0},Tx={TxX:Tx=1,Tx(x)=x}为连续线性泛函, 由Hahn-Banach定理知此集合非空.

引理4.1 (崔艳艳,王朝君[13]) 设fD上正规化双全纯映照, F(x)=Φβ2,,βn1,0(f)(x)=n1j=1(f(Tx1(x))Tx1(x))βjTxj(x)xj+xn1j=1Txj(x)xj, 其中nN(n2),β1=1,0βj1,j=2,,n1, 且(f(z)z)βj|z=0=1, j=1,,n1,x1ˉB,x1=1, 并且x1,,xnX线性无关,对任意xi, 选取TxiX,使Txi=1,且 Txi(xi)=1,Txi(xj)=0,(ij) (由Hahn-Banach定理及其推论知此条件可取到), 则 xTx[(DF(x))1F(x)]=x2+n1j=1βj|Txj(x)|2[f(Tx1(x))Tx1(x)f(Tx1(x))1].

定理4.2fD上正规化的ρ次椭圆形β型螺形函数, ρ(0,1), β(π2,π2), cosβ>11+ρ, F(x)为引理4.1中所定义的映照,则F(x)B上正规化的ρ次椭圆形β型螺形映照.

由定义2.6需证 |eiβ1xTx[(DF(x))1F(x)](1isinβ)|<ρ{eiβ1xTx[(DF(x))1F(x)]}, |eiβxTx[(DF(x))1F(x)](1isinβ)x2|<ρ{eiβxTx[(DF(x))1F(x)]}. 由于fD上正规化的ρ次椭圆形β型螺形函数,则 |eiβf(Tx1(x))Tx1(x)f(Tx1(x))(1isinβ)|<ρ[eiβf(Tx1(x))Tx1(x)f(Tx1(x))]. 由引理4.1知 |eiβxTx[(DF(x))1F(x)](1isinβ)x2|=|eiβ{x2+n1j=1βj|Txj(x)|2[f(Tx1(x))Tx1(x)f(Tx1(x))1]}(1isinβ)x2|=|n1j=1βj|Txj(x)|2[eiβf(Tx1(x))Tx1(x)f(Tx1(x))(1isinβ)]+n1j=1βj|Txj(x)|2(1cosβ)+(cosβ1)x2|=|n1j=1βj|Txj(x)|2[eiβf(Tx1(x))Tx1(x)f(Tx1(x))(1isinβ)]+(1cosβ)[n1j=1βj|Txj(x)|2x2]|<ρn1j=1βj|Txj(x)|2[eiβf(Tx1(x))Tx1(x)f(Tx1(x))]+(1cosβ)[x2n1j=1βj|Txj(x)|2], ρ{eiβxTx[(DF(x))1F(x)]}=ρ{eiβ[x2+n1j=1βj|Txj(x)|2(f(Tx1(x))Tx1(x)f(Tx1(x))1)]}=ρcosβx2+ρn1j=1βj|Txj(x)|2[eiβf(Tx1(x))Tx1(x)f(Tx1(x))]ρcosβn1j=1βj|Txj(x)|2=ρn1j=1βj|Txj(x)|2[eiβf(Tx1(x))Tx1(x)f(Tx1(x))]+ρcosβ(x2n1j=1βj|Txj(x)|2), 这里由β1=1,0βj1 (j=2,,n1)x2n1j=1βj|Txj(x)|20,于是当cosβ>11+ρ时有 |eiβxTx[(DF(x))1F(x)](1isinβ)x2|<ρ{eiβxTx[(DF(x))1F(x)]},F(x)B上正规化的ρ次椭圆形β型螺形映照.

Xn维复Hilbert空间, 则由Riesz表示定理知Tx1(x)=x,x1, 取x1=(1,,0), 则x=1,x=(z1,,zn)=(z1,z0), 则有Tx1(x)=z1,于是引理4.1所定义的函数为

F(z)=(f(z1),(f(z1)z1)β2z2,,(f(z1)z1)βn1zn1,zn), (4.1)
特别当n=2时有F(z)=(f(z1),z2).

推论4.3F(z)为式(4.1)定义的函数,其中nN(n2),β1=1,0βj1, j=2,,n1, 且(f(z)z)βj|z=0=1 (j=1,,n1), β(π2,π2), cosβ>11+ρ, 则F(z)在复Hilbert空间单位球上保持ρ次椭圆形β型螺形性.

与定理4.2同理可得以下结论.

定理4.4 fD上正规化的ρ次椭圆形β型螺形函数,ρ(0,1), β(π2,π2), cosβ>11+ρ,且 F(x)=f(Tx1(x))x1+(f(Tx1(x))Tx1(x))γ(xTx1(x)x1), 其中0γ1, 且(f(z)z)γ|z=0=1,x1ˉB,x1=1, 则F(x)是复Banach空间单位球B上正规化的ρ次椭圆形β型螺形映照.

推论4.5fD上正规化的ρ次椭圆形β型螺形函数,ρ(0,1), β(π2,π2), cosβ>11+ρ, 0γ1,z=(z1,z0)B, F(z)=(f(z1),(f(z1)z1)γz0), 其中(f(z1)z1)γ|z=0=1, 则F(z)是复Hilbert空间单位球上正规化的ρ次椭圆形β型螺形映照.


5 Reinhardt域上的情形

引理5.1 (Liu T S,Zhang W J[14])设ρ(z)Dp={z=(z1,,zn)Cn:nj=1|zj|pj<1} 上的Minkowski泛函,zDp{0},则 ρzj(z)=pjˉzj|zjρ(z)|pj22ρ(z)[nk=1pk|zkρ(z)|pk]. 引理5.2 (刘名生,朱玉灿[15]) 设有界完全Reinhardt域Ω的Minkowski泛函ρ(z)ˉΩ{0}上的一个C1函数,则 对于z=(z1,,zn)Ω{0}ρ(z)zjzj0(j=1,,n),且ρ(z)=2nj=1ρ(z)zjzj.

定理5.3fD上正规化的ρ次椭圆形β型螺形函数,ρ(0,1), β(π2,π2), cosβ>11+ρ,r=sup, 且 F(z)=\bigg(rf\Big(\frac{z_{1}}{r}\Big), \Big(\frac{rf(\frac{z_{1}}{r})}{z_{1}}\Big)^{\beta_{2}}z_{2},\cdots, \Big(\frac{rf(\frac{z_{1}}{r})}{z_{1}}\Big)^{\beta_{n}}z_{n}\bigg)' , 其中0\leq\beta_{j}\leq1, 且(\frac{rf(\frac{z_{1}}{r})}{z_{1}})^{\beta_{j}}|_{z_{1}=0}=1,j=2,\cdots,n, 则F(z)是Reinhardt域D_{p}=\{z=(z_{1},\cdots,z_{n})\in C^{n}:\sum\limits^{n}_{j=1}|z_{j}|^{p_{j}}<1\}上正规化的\rho次椭圆形\beta型螺形映照.

\omega=\frac{z_{1}}{r}, 由于fD上正规化的\rho次椭圆形\beta型螺形函数,则 \bigg|{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}-(1-{\rm i}\sin\beta)\bigg| <\rho\Re\bigg[{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}\bigg]. F(z)的表达式可知F(z)是正规化的,且 J^{-1}_{F}(z)F(z)= \bigg(\frac{rf(\omega)}{f' (\omega)}, \Big(1-\beta_{2}+\beta_{2}\frac{f(\omega)}{\omega f' (\omega)}\Big)z_{2},\cdots, \Big(1-\beta_{n}+\beta_{n}\frac{f(\omega)}{\omega f' (\omega)}\Big)z_{n}\bigg)' . 若记\sigma=\sum\limits^{n}_{k=1}p_{k}| \frac{z_{k}}{\rho(z)}|^{p_{k}},则由引理5.1及引理5.2有 \begin{eqnarray*} &&\bigg|{\rm e}^{-{\rm i}\beta}\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J^{-1}_{F}(z)F(z)-(1-{\rm i}\sin\beta)\bigg| \\ &=&\bigg|\frac{1}{\sigma}\bigg\{p_{1} \bigg|\frac{z_{1}}{\rho(z)}\bigg|^{p_{1}}{\rm e}^{-{\rm i}\beta}\displaystyle \frac{f(\omega)}{\omega f' (\omega)}+\sum\limits^{n}_{j=2}p_{j} \bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}} \bigg[(1-\beta_{j}){\rm e}^{-{\rm i}\beta}+\beta_{j}{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}\bigg]\bigg\}\\ &&-(1-{\rm i}\sin\beta)\bigg| \\ &=&\bigg|\frac{1}{\sigma} \bigg\{p_{1}\bigg|\frac{z_{1}}{\rho(z)} \bigg|^{p_{1}}{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}+\sum\limits^{n}_{j=2}p_{j} \bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}} \bigg[(1-\beta_{j}){\rm e}^{-{\rm i}\beta}+\beta_{j}{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}\bigg]\bigg\} \\ &&-\frac{1}{\sigma}\displaystyle\sum\limits^{n}_{j=1}p_{j}\Big|\frac{z_{j}}{\rho(z)}\Big|^{p_{j}}(1-\textrm{i}\sin\beta)\Big| \\ &=&\bigg|\frac{1}{\sigma}\bigg\{p_{1} \bigg|\frac{z_{1}}{\rho(z)}\bigg|^{p_{1}} \bigg[{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}-(1-{\rm i}\sin\beta)\bigg]+\sum\limits^{n}_{j=2} p_{j}\bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}}\beta_{j} \bigg[{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}-(1-{\rm i}\sin\beta)\bigg] \\ &&+\displaystyle\sum\limits^{n}_{j=2}p_{j} \bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}} \big[(1-\beta_{j}){\rm e}^{-{\rm i}\beta}+\beta_{j}(1-{\rm i}\sin\beta)\big] \bigg\} -\frac{1}{\sigma}\displaystyle\sum\limits^{n}_{j=1}p_{j} \bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}}(1-{\rm i}\sin\beta)\bigg| \\ &\leq& \frac{1}{\sigma}\bigg\{ \bigg[p_{1}\bigg|\frac{z_{1}}{\rho(z)} \bigg|^{p_{1}}+\sum\limits^{n}_{j=2}p_{j} \bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}}\beta_{j}\bigg] \bigg|{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}-(1-{\rm i}\sin\beta)\bigg|\\ &&+\sum\limits^{n}_{j=2}p_{j}\bigg|\frac{z_{j}}{\rho(z)} \bigg|^{p_{j}}(1-\beta_{j}) (1-\cos\beta)\bigg\} \\ &<&\frac{1}{\sigma}\bigg\{ \bigg[p_{1}\bigg|\frac{z_{1}}{\rho(z)} \bigg|^{p_{1}}+\sum\limits^{n}_{j=2}p_{j} \bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}}\beta_{j}\bigg] \rho\Re\bigg[{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}\bigg]+\sum\limits^{n}_{j=2}p_{j} \bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}} (1-\beta_{j})(1-\cos\beta)\bigg\}, \end{eqnarray*} \begin{eqnarray*} &&\rho \Re\bigg[{\rm e}^{-{\rm i}\beta}\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J^{-1}_{F}(z)F(z)\bigg] \\ &=&\rho\frac{1}{\sigma}\Re \bigg\{p_{1}\bigg|\frac{z_{1}}{\rho(z)}\bigg|^{p_{1}}{\rm e}^{-{\rm i}\beta} \frac{f(\omega)}{\omega f' (\omega)}+\sum\limits^{n}_{j=2}p_{j}\bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}} \bigg[(1-\beta_{j}){\rm e}^{-{\rm i}\beta}+\beta_{j}{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}\bigg]\bigg\} \\ &=&\rho\frac{1}{\sigma}\bigg\{p_{1} \bigg|\frac{z_{1}}{\rho(z)}\bigg|^{p_{1}}\Re\bigg[{\rm e}^{-{\rm i}\beta}\displaystyle \frac{f(\omega)}{\omega f' (\omega)}\bigg]+\sum\limits^{n}_{j=2}p_{j} \bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}}(1-\beta_{j})\cos\beta+\beta_{j}\Re \bigg[{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}\bigg]\bigg\} \\ &=&\rho\frac{1}{\sigma} \bigg\{\bigg[p_{1}\bigg|\frac{z_{1}}{\rho(z)}\bigg|^{p_{1}}+\sum\limits^{n}_{j=2}p_{j} \bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}}\beta_{j}\bigg] \Re\bigg[{\rm e}^{-{\rm i}\beta}\frac{f(\omega)}{\omega f' (\omega)}\bigg]+\sum\limits^{n}_{j=2}p_{j} \bigg|\frac{z_{j}}{\rho(z)}\bigg|^{p_{j}} (1-\beta_{j})\cos\beta\bigg\}, \end{eqnarray*} 于是当\cos\beta>\frac{1}{1+\rho}时有 \bigg|{\rm e}^{-{\rm i}\beta}\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J^{-1}_{F}(z)F(z)-(1-{\rm i}\sin\beta)\bigg|<\rho \Re\bigg[{\rm e}^{-{\rm i}\beta}\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J^{-1}_{F}(z)F(z)\bigg], 由定义2.7知 F(z)D_{p}上正规化的\rho次椭圆形\beta型螺形映照.

2009年阮林要[16]将Roper-Suffridge算子推广为 F(z)=\bigg(f(z_{1}),\Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{2}}\widetilde{z_{2}},\cdots, \Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{k}}\widetilde{z_{k}}\bigg)' , 并证明了该算子在\Omega' _{N}=\{z=(z_{1},\widetilde{z_{2}},\cdots,\widetilde{z_{k}})\in C\times C^{n_{2}}\times \cdots\times C^{n_{k}}:|z_{1}|^{p_{1}}+\sum\limits^{k}_{j=2}\|\widetilde{z_{j}}\|^{p_{j}}_{j}<1\}上保持\alpha次殆 \beta型螺形性及\alpha\beta型螺形性, 其中\|\cdot\|_{j}C^{n_{j}}~(n_{j}\in N,j=2,\cdots,k)上的Banach范数, 且p_{j}\geq1~(j=1,\cdots,k), N=1+\sum\limits^{k}_{j=2}n_{j}. 下面我们讨论该算子在\Omega' _{N}上也保持\rho次椭圆形\beta型螺形性.

定理5.4f(z_{1})D上正规化的\rho次椭圆形\beta型螺形函数,\rho\in{(0,1)}, \beta\in(-\frac{\pi}{2},\frac{\pi}{2}), \cos\beta>\frac{1}{1+\rho},且 F(z)=\bigg(f(z_{1}),\Big( \frac{f(z_{1})}{z_{1}}\Big)^{\beta_{2}}\widetilde{z_{2}},\cdots, \Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{k}}\widetilde{z_{k}}\bigg)' , 其中0\leq\beta_{j}\leq1, 且(\frac{f(z_{1})}{z_{1}})^{\beta_{j}}|_{z_{1}=0}=1,j=2,\cdots,k, 则F(z)在Reinhardt域\Omega' _{N}=\{z=(z_{1},\widetilde{z_{2}},\cdots, \widetilde{z_{k}})\in C\times C^{n_{2}}\times \cdots\times C^{n_{k}}:|z_{1}|^{p_{1}}+\sum\limits^{k}_{j=2}\|\widetilde{z_{j}} \|^{p_{j}}_{j}<1\}上是正规化的\rho次椭圆形\beta型螺形映照.

由于f(z_{1})D上正规化的\rho次椭圆形\beta型螺形函数,则 \bigg|{\rm e}^{-{\rm i}\beta}\frac{f(z_{1})}{z_{1}f' (z_{1})}-(1-{\rm i}\sin\beta)\bigg| <\rho \Re\bigg[{\rm e}^{-{\rm i}\beta}\frac{f(z_{1})}{z_{1}f' (z_{1})}\bigg], F(z)的表达式可知F(z)是正规化的,且 \begin{eqnarray*} J^{-1}_{F}(z)= \left( \begin{array}{cccc} \frac{1}{f' (z_{1})} &0&\cdots&0\\[3mm] s_{2}&\Big(\frac{f(z_{1})}{z_{1}}\Big)^{-\beta_{2}}I^{n_{2}}_{2}&\cdots&0 \\[3mm] \vdots&\vdots&\ & \vdots \\[3mm] s_{n}&0& \cdots&\Big (\frac{f(z_{1})}{z_{1}}\Big)^{-\beta_{k}}I^{n_{k}}_{k} \end{array} \right). \end{eqnarray*} 其中s_{j}=\beta_{j}(\frac{1}{z_{1}f' (z_{1})}-\frac{1}{f(z_{1})})\widetilde{z_{j}}, I^{n_{j}}_{j}表示第j行第j列的n_{j}阶单位方阵, 由引理5.1经简单计算可知 \frac{\partial\rho(z)}{\partial z}J^{-1}_{F}(z)F(z) =\frac{f(z_{1})}{z_{1}f' (z_{1})}\frac{\partial\rho(z)}{\partial z_{1}}z_{1} +\sum\limits^{k}_{j=2}\bigg[1-\beta_{j}+\beta_{j}\frac{f(z_{1})}{z_{1}f' (z_{1})}\bigg] \frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}, 则由引理5.2有 \begin{eqnarray*} &&\bigg|{\rm e}^{-{\rm i}\beta}\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J^{-1}_{F}(z)F(z)-(1-{\rm i}\sin\beta)\bigg| \\ &=& \bigg|{\rm e}^{-{\rm i}\beta}\frac{2}{\rho(z)} \bigg\{\frac{f(z_{1})}{z_{1}f' (z_{1})}\frac{\partial\rho(z)}{\partial z_{1}}z_{1} +\sum\limits^{k}_{j=2} \bigg[1-\beta_{j}+\beta_{j}\frac{f(z_{1})}{z_{1}f' (z_{1})}\bigg]\frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\bigg\}-(1-{\rm i}\sin\beta)\bigg| \\ &=&\bigg|\frac{2}{\rho(z)}\bigg\{\bigg[{\rm e}^{-{\rm i}\beta}\frac{f(z_{1})}{z_{1}f' (z_{1})}\bigg] \frac{\partial\rho(z)}{\partial z_{1}}z_{1}+\sum\limits^{k}_{j=2}\beta_{j}\bigg[{\rm e}^{-{\rm i}\beta}\frac{f(z_{1})}{z_{1}f' (z_{1})}\bigg] \frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\\ &&+{\rm e}^{-{\rm i}\beta}\sum\limits^{k}_{j=2} (1-\beta_{j})\frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\bigg\} -\frac{2}{\rho(z)}(1-{\rm i}\sin\beta)\bigg[\frac{\partial\rho(z)}{\partial z_{1}}z_{1}+\frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\bigg]\bigg| \\ &=&\bigg|\frac{2}{\rho(z)}\bigg\{\bigg[{\rm e}^{-{\rm i}\beta}\frac{f(z_{1})}{z_{1}f' (z_{1})} -(1-{\rm i}\sin\beta)\bigg]\frac{\partial\rho(z)}{\partial z_{1}}z_{1}\\ &&+\sum\limits^{k}_{j=2}\beta_{j} \bigg[{\rm e}^{-{\rm i}\beta}\frac{f(z_{1})}{z_{1}f' (z_{1})}-(1-{\rm i}\sin\beta)\bigg] \frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}} +{\rm e}^{-{\rm i}\beta}\displaystyle\sum\limits^{k}_{j=2}(1-\beta_{j}) \frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\\ && +\displaystyle\sum\limits^{k}_{j=2} (\beta_{j}-1)(1-{\rm i}\sin\beta)\frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\bigg\}\bigg| \\ &=&\bigg|\frac{2}{\rho(z)}\bigg\{\bigg[{\rm e}^{-{\rm i}\beta}\frac{f(z_{1})}{z_{1}f' (z_{1})}- (1-{\rm i}\sin\beta)\bigg]\frac{\partial\rho(z)}{\partial z_{1}}z_{1}\\ &&+\sum\limits^{k}_{j=2}\beta_{j} \bigg[{\rm e}^{-{\rm i}\beta}\frac{f(z_{1})}{z_{1}f' (z_{1})}-(1-{\rm i}\sin\beta)\bigg] \frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}} +\displaystyle\sum\limits^{k}_{j=2}(1-\beta_{j})(\cos\beta-1)\frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\bigg\}\bigg| \\ &<&\frac{2}{\rho(z)}\bigg\{\bigg[\frac{\partial\rho(z)}{\partial z_{1}}z_{1}+\sum\limits^{k}_{j=2}\beta_{j}\frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\bigg]\rho \Re\bigg[{\rm e}^{-{\rm i}\beta}\frac{f(z_{1})}{z_{1}f' (z_{1})}\bigg] \\ && +\displaystyle\sum\limits^{k}_{j=2}(1-\beta_{j}) (1-\cos\beta)\frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\bigg\} \\ &=&\frac{2}{\rho(z)}\bigg[\frac{\partial\rho(z)}{\partial z_{1}}z_{1}+\sum\limits^{k}_{j=2}\beta_{j}\frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\bigg]\rho \Re\bigg[{\rm e}^{-{\rm i}\beta}\frac{f(z_{1})}{z_{1}f' (z_{1})}\bigg] \\ && +\displaystyle\sum\limits^{k}_{j=2}\frac{2}{\rho(z)}(1-\beta_{j})(1-\cos\beta) \frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}, \end{eqnarray*} \begin{eqnarray*} &&\rho \Re\bigg[{\rm e}^{-{\rm i}\beta}\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J^{-1}_{F}(z)F(z)\bigg] \\ &=&\rho \Re\bigg\{{\rm e}^{-{\rm i}\beta}\frac{2}{\rho(z)} \bigg[\frac{f(z_{1})}{z_{1}f' (z_{1})}\frac{\partial\rho(z)}{\partial z_{1}}z_{1} +\sum\limits^{k}_{j=2}(1-\beta_{j}+\beta_{j}\frac{f(z_{1})}{z_{1}f' (z_{1})}) \frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\bigg]\bigg\} \\ &=&\frac{2}{\rho(z)}\bigg[\frac{\partial\rho(z)}{\partial z_{1}}z_{1}+\sum\limits^{k}_{j=2}\beta_{j}\frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}\bigg]\rho \Re\bigg[{\rm e}^{-{\rm i}\beta}\frac{f(z_{1})}{z_{1}f' (z_{1})}\bigg] +\displaystyle\sum\limits^{k}_{j=2}2 \cos\beta(1-\beta_{j})\frac{\partial\rho(z)}{\partial \widetilde{z_{j}}}\widetilde{z_{j}}, \end{eqnarray*} 于是当\cos\beta>\frac{1}{1+\rho}时有 \bigg|{\rm e}^{-{\rm i}\beta}\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J^{-1}_{F}(z)F(z)-(1-{\rm i}\sin\beta)\bigg|<\rho \Re\bigg[{\rm e}^{-{\rm i}\beta}\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J^{-1}_{F}(z)F(z)\bigg], 由定义2.7知 F(z)\Omega' _{N}上正规化的\rho次椭圆形\beta型螺形映照.

注 5.5 与定理5.3同理可证定理3.1中所讨论的算子 F(z)D_{p}上也保持\rho次椭圆形\beta型螺形性,且在上述所有结论中,若令\beta=0, 即得到相应的关于\rho次椭圆星形映照的结论.

参考文献
[1] Saewan S, Kumam P. A modified hybrid projection method for solving generalized mixed equilibrium problems and fixed point problems in Banach spaces. Comput Math Appl, 2011, 62: 1723-1735
[2] Zhang S. Generalized mixed equilibrium problem in Banach spaces. Appl Math Mech, 2009, 30: 1105-1112
[3] Yao Y, Cho Y J, Liou Y. Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems. Eur J Oper Res, 2011, 212: 242-250
[4] Kim J K, Cho S Y, Qin X. Some results on generalized equilibrium problems involving strictly pseudocontractive mappings. Acta Math Sci, 2011, 31B(5): 985-996
[5] Stampacchia G. Formes bilineaires coercitives sur les ensembles convexes. Académie des Sciences de Paris, 1964, 258: 4413-4416
[6] Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems. Math Student, 1994, 63: 123-145
[7] Noor M A. Some predictor-corrector algorithms for multivalued variational inequalities. Journal of Optimization Theory and Applications, 2001, 108(3): 659-671
[8] Noor M A. On a class of nonconvex equilibrium problems. Appl Math Comput, 2004, 157: 653-666
[9] Noor M A, Themistocles M. On general hemiequilibrium problems. J Math Anal Appl, 2006, 324: 1417-1428
[10] Noor M A. Multivalued general equilibrium problems. J Math Anal Appl, 2003, 283: 140-149
[11] Kim J K, Anh P N, Hyun H G. A proximal point-type algorithm for pseudomonotone equilibrium problems. Bull Korean Math Soc, 2012, 49: 749-759
[12] Burachik R, Kassay G. On a generalized proximal point method for solving equilibrium problems in Banach spaces. Nonlinear Anal, 2012, 75: 6456-6464
[13] Tada A, Takahashi W. Weak and strong convergence theorems for nonexpansive mappings and equilibrium problems. J Optim Theory Appl, 2007, 133: 359-370
[14] Changa S, Joseph Leeb H W, Chanb C K. A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70: 3307-3319
[15] Noor M A. Some iterative schemes for solving extended general quasi variational inequalitie. Appl Math Inf Sci, 2013, 7(3): 917-925
[16] Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J Math Anal Appl, 2007, 331: 506-515
[17] Kumam P. A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive. Nonlinear Anal, Hybrid Syst, 2008, 18: 1245-1255
[18] Plubtieng S, Punpaeng R. A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. J Math Anal Appl, 2007, 336(1): 455-469
[19] Shehu Y. Iterative approximation for common solutions of equilibrium problems, variational inequality and fixed point problems. Mathematical and Computer Modelling, 2013, 57: 1489-1503
[20] Shi P. Equivalence of variational inequalities with Wiener-Hopf equations. Proc Amer Math Soc, 1991, 111: 339-346
[21] Verma R U. Generalized variational inequalities involving multivalued relaxed monotone operators. Appl Math Lett, 1997, 10: 107-109
[22] Robinson S M. Normal maps induced by linear transformations. Math Oper Res, 1992, 17(3): 691-714
[23] Noor M A, Huang Z. Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings. Applied Mathematics and Computation, 2007, 191: 504-510
[24] Al-Shemas E. General nonconvex Wiener-Hopf equations and general nonconvex variational inequalities. J Math Sci Adv Appl, 2013, 19(1): 1-11
[25] Shimoji K, Takahashi W. Strong convergence to common fixed points of infinite nonexpansive mappings and applications. Taiwanese J Math, 2001, 5: 387-404
[26] Marino G, Xu H K. A general iterative method for non-expansive mapping in Hilbert spaces. J Math Anal Appl, 2006, 318: 43-52
[27] Yao Y, Kang S M, Liou Y C. Algorithms for approximating minimization problems in Hilbert spaces. J Comput Anal Appl, 2011, 235: 3515-3526
螺形映照的新子族
王朝君 , 崔艳艳, 刘浩, 朱思峰