自从Hopfield[1]在1984年提出了后人以他名字命名的Hopfield神经网络以来, 这类人工神经网络在很多方面得到了广泛的应用,如组合优化[2, 3, 4]、 图像处理[5, 6]、模式识别[7]、信号处理[8]、 通讯技术[9]等等, 所以在过去的数十年中,作为一个递归神经网络, Hopfield神经网络被持续研究[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. 在神经网络的实际应用中,一方面由于两个神经元之间信息传递不免存在时滞, 另一方面由于受到诸如有限的开关速度等硬件的影响,时滞现象也是不可避免的, 所以在神经网络研究中引入时滞得到了广泛的关注[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. 随着对神经网络的不断深入的研究,学者们发现由于现实世界中神经细胞的复杂性, 许多现有的神经网络模型很难精确描述神经反应过程的特性, 在神经网络系统中应该包含过去状态的微分信息来进一步描述这样的复杂的神经反应动力系统. 这种新的神经网络模型叫做中立型神经网络模型. 在文献[20]中,Orman研究了如下中立型时滞Hopfield神经网络模型
Orman 通过构建李亚普诺夫函数的方法,获得了关于该系统平衡点的存在性、 唯一性和全局渐近稳定性的时滞依赖的充分条件.
本文在系统(1.1)的基础上增加了状态变量为微分时滞的激活函数项, 研究如下中立型时滞神经网络模型的全局渐近稳定性
对于激活函数f,我们假设满足以下条件
(H)~ |fi(xi)|≤Mi,f(0)=0,对于∀z1,z2∈R,且z1≠z2,有0≤fi(z1)−fi(z2)z1−z2 ≤Li,其中Mi和Li分别表示正常数,i=1,2,⋯,an.
我们证明系统(1.2)的零解是全局渐近稳定的.
本节我们将建立关于系统(1.2)的零解的全局渐近稳定性的充分条件,我们先做如下标记
(I)~ η1=x(t), η2=f(x(t)), η3=f(x(t−τ1(t))), η4=˙x(t−τ2(t)), η5=f(˙x(t)), η6=f(˙x(t−τ3(t)));
(II)~ LM=max{L1,L2,⋯,Ln}, aM=max{a1,a2,⋯,an}, λ=aMLM;
(III)~ E表示单位矩阵,N表示自然数集,上标T表示矩阵的转置, 标记λm(P)和λM(P) 分别表示矩阵P的最小特征值和最大特征值,Diag{⋯}表示对角矩阵.
用标记(I),系统(1.2)可以表示为以下式子
接下来,我们给出以下定理.
定理2.1 如果存在对称正定矩阵P,Q,R使得以下对称矩阵Ω 负定,那么系统(1.2)的零解是全局渐近稳定的 Ω=[Σ11 A2+Φ12 A3+Φ13 A4+Φ14 A5+Φ15 A6+Φ16AT2+ΦT12 Σ22A3+Φ23A4+Φ24A5+Φ25A6+Φ26AT3+ΦT13 AT3+ΦT23Σ33Φ34Φ35Φ36AT4+ΦT14 AT4+ΦT24ΦT34Σ44Φ45Φ46AT5+ΦT15 AT5+ΦT25ΦT35ΦT45Σ55Φ56AT6+ΦT16 AT6+ΦT26ΦT36ΦT46ΦT56Σ66], 其中 ~Φij=ATiQAj (1≤i≤ j≤6, i, j∈N), Σ11=2A1+Φ11, Σ22=2λE+A2+AT2+P+Φ22, Σ33=−(1−τ∗1)P+Φ33, Σ44=−(1−τ∗2)Q+Φ44, Σ55=AT5+R, Σ66=−(1−τ∗3)R+Φ66.
证 构造如下李亚普诺夫函数
由假设(H)可得 0≤fi(xi(t))xi(t)≤Li≤LM, 0≤|fi(xi(t))|≤Li|xi(t)|≤LM|xi(t)|, 0≤|fi(xi(t))fi(xi(t))|≤Li|xi(t)fi(xi(t))|≤LM|xi(t)fi(xi(t))|. 由以上第一个不等式可知,fi(xi(t)) 与 xi(t) 是同号的,所以有 0≤fi(xi(t))fi(xi(t))≤Lixi(t)fi(xi(t))≤LMxi(t)fi(xi(t)), fi(xi(t))xi(t)≥1LMfi(xi(t))fi(xi(t)).
由ai<0, aM=max{a1,a2,⋯,an}, λ=aMLM,可得 fT(x(t))Ax(t)=n∑i=1fi(xi(t))aixi(t)≤1LMn∑i=1fi(xi(t))aifi(xi(t))≤aMLMn∑i=1fi(xi(t))fi(xi(t))=λfT(x(t))f(x(t)).
用标记(I)和(II),以上不等式可表示为ηT2A1η1≤ληT2η2.
为了便于求导,我们对(2.2)式的第二、三、四项做变量替换τ=t+s,得
沿系统(1.2)的轨线对式(2.3)两边求导,可得 ˙V(t)=2xT(t)˙x(t)+2fT(x(t))˙x(t)+fT(x(t))Pf(x(t))−(1−˙τ1(t))fT(x(t−τ1(t)))Pf(x(t−τ1(t)))+˙xT(t)Q˙x(t)−(1−˙τ2(t))˙xT(t−τ2(t))Q˙x(t−τ2(t))+fT(˙x(t))Rf(˙x(t))−(1−˙τ3(t))fT(˙x(t−τ3(t)))Rf(˙x(t−τ3(t))).
于是用标记(I)以及式(2.1)可得 ˙V(t)=2ηT1(A1η1+A2η2+A3η3+A4η4+A5η5+A6η6)+2ηT2(A1η1+A2η2+A3η3+A4η4+A5η5+A6η6)+ηT2Pη2−(1−˙τ1(t))ηT3Pη3+(A1η1+A2η2+A3η3+A4η4+A5η5+A6η6)TQ(A1η1+A2η2+A3η3+A4η4+A5η5+A6η6)−(1−˙τ2(t))ηT4Qη4+ηT5Rη5−(1−˙τ3(t))ηT6Rη6≤2ηT1A1η1+2ηT1A2η2+2ηT1A3η3+2ηT1A4η4+2ηT1A5η5+2ηT1A6η6+2ληT2η2+2ηT2A2η2+2ηT2A3η3+2ηT2A4η4+2ηT2A5η5+2ηT2A6η6+ηT2Pη2−(1−τ∗1)ηT3Pη3+(A1η1+A2η2+A3η3+A4η4+A5η5+A6η6)TQ(A1η1+A2η2+A3η3+A4η4+A5η5+A6η6)−(1−τ∗2)ηT4Qη4+ηT5Rη5−(1−τ∗3)ηT6Rη6=(2ηT1A1η1)+(ηT1A2η2+ηT2AT2η1)+(ηT1A3η3+ηT3AT3η1)+(ηT1A4η4+ηT4AT4η1)+(ηT1A5η5+ηT5AT5η1)+(ηT1A6η6+ηT6AT6η1)+2ληT2η2+(ηT2A2η2+ηT2AT2η2)+(ηT2A3η3+ηT3AT3η2)+(ηT2A4η4+ηT4AT4η2)+(ηT2A5η5+ηT5AT5η2)+(ηT2A6η6+ηT6AT6η2)+ηT2Pη2−(1−τ∗1)ηT3Pη3+(A1η1+A2η2+A3η3+A4η4+A5η5+A6η6)TQ(A1η1+A2η2+A3η3+A4η4+A5η5+A6η6)−(1−τ∗2)ηT4Qη4+ηT5Rη5−(1−τ∗3)ηT6Rη6=ηT1(2A1+AT1QA1)η1+ηT1(A2+AT1QA2)η2+ηT1(A3+AT1QA3)η3+ηT1(A4+AT1QA4)η4+ηT1(A5+AT1QA5)η5+ηT1(A6+AT1QA6)η6+ηT2(AT2+AT2QA1)η1+ηT2(2λE+A2+AT2+P+AT2QA2)η2+ηT2(A3+AT2QA3)η3+ηT2(A4+AT2QA4)η4+ηT2(A5+AT2QA5)η5+ηT2(A6+AT2QA6)η6+ηT3(AT3+AT3QA1)η1+ηT3(AT3+AT3QA2)η2+ηT3(−(1−τ∗1)P+AT3QA3)η3+ηT3(AT3QA4)η4+ηT3(AT3QA5)η5+ηT3(AT3QA6)η6+ηT4(AT4+AT4QA1)η1+ηT4(AT4+AT4QA2)η2+ηT4(AT4QA3)η3+ηT4(−(1−τ∗2)Q+AT4QA4)η4+ηT4(AT4QA5)η5+ηT4(AT4QA6)η6+ηT5(AT5+AT5QA1)η1+ηT5(AT5+AT5QA2)η2+ηT5(AT5QA3)η3+ηT5(AT5QA4)η4+ηT5(AT5+R)η5+ηT5(AT5QA6)η6+ηT6(AT6+AT6QA1)η1+ηT6(AT6+AT6QA2)η2+ηT6(AT6QA3)η3+ηT6(AT6QA4)η4+ηT6(AT6QA5)η5+ηT6(−(1−τ∗3)R+AT6QA6)η6=(ηT1 ηT2 ηT3 ηT4 ηT5 ηT6)Ω(ηT1 ηT2 ηT3 ηT4 ηT5 ηT6)T, 其中 Ω=[Σ11 A2+Φ12 A3+Φ13 A4+Φ14 A5+Φ15 A6+Φ16AT2+ΦT12 Σ22A3+Φ23A4+Φ24A5+Φ25A6+Φ26AT3+ΦT13 AT3+ΦT23Σ33Φ34Φ35Φ36AT4+ΦT14 AT4+ΦT24ΦT34Σ44Φ45Φ46AT5+ΦT15 AT5+ΦT25ΦT35ΦT45Σ55Φ56AT6+ΦT16 AT6+ΦT26ΦT36ΦT46ΦT56Σ66].
根据已知条件,Ω负定,所以˙V(t)负定,于是定理2.1成立.
这一节,我们用一个实际例子来验证定理结果的有效性.
证 考虑如下二元神经网络模型
在这个系统中,A1=[−100−1],A2=[000.20], A3=[00.30.10], A4=[0.0100.20.02], A5=[−0.200.030.02−0.10], A6=[0−0.0350.0250.100], LM=0.5,aM=−1,λ=aMLM=−2,τ∗1=0.05,τ∗2=0.03,τ∗3=0.01.
这里我们取 P=[0.49000.37],Q=[0.23000.56],R=[0.0274000.0212],根据定理2.1,我们利用Matlab来计算Ω的特征值可得: eig(Ω)=(−3.7985 −3.3843 −1.8182 −1.4472 −0.5429 −0.4567 −0.2899 −0.1856 −0.1331 −0.0671 −0.0049 −0.0268),从而得知Ω负定, 由定理2.1的结论即可得到系统(3.1)的零解是全局渐近稳定的.
本文从一个新的中立型时滞神经网络的数学模型来研究它的稳定性问题,由定理的结果我们可以看出, 如果时滞为常数或时滞的一阶导数有界,那么系统(1.2)的稳定性将不受影响. 另外,定理的结论中有一个声明条件就是``如果存在对称正定矩阵P、Q、R"满足 负定的这个条件,那么就产生一个新的问题是怎样判断这样的对称正定矩阵是否存在? 这是这个领域研究的一个难题,通常的做法是针对具体问题采用数据测试的方法找到满足 条件的对称正定矩阵. 尽管所得结论带来了一个新的难题, 但是这个难题总是比直接判断系统的原模型是否稳定较容易得多.