Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
  数学物理学报  2015, Vol. 35 Issue (3): 515-524   PDF (245 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
席博彦
祁锋
s-对数凸函数的Hermite-Hadamard型积分不等式
席博彦1, 祁锋2     
1. 内蒙古民族大学数学学院 内蒙古 通辽市 028043;
2. 天津工业大学理学院数学系 天津市 300387
摘要:该文定义了"s-对数凸函数"的概念, 并给出了可微s-对数凸函数的若干个 Hermite-Hadamard型积分不等式, 作为应用给出了平均数的几个不等式.
关键词积分不等式     积分等式     Hermite-Hadamard积分不等式     凸函数     s-对数凸函数    
Some Integral Inequalities of Hermite-Hadamard Type for s-Logarithmically Convex Functions
Xi Boyan1, Qi Feng2    
1. College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043;
2. Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin 300387
Abstract: In the paper, we introduce the notion "s-logarithmically convex function", establish some new integral inequalities of Hermite-Hadamard type for functions the power of the absolute of whose first derivative is s-logarithmically convex, and apply these newly obtained inequalities to means.
Key words: Integral inequality     Integral identity     Hermite-Hadamard's integral inequality     Convex function     s-Logarithmically convex function    
1 引言

首先,我们引进入众所周知的凸函数的定义.

定义1.1 设函数f:IR=(,+)R, 若对任意的x,yI和任意的$\lambda\in[0, 1]$,有

f(λx+(1λ)y)λf(x)+(1λ)f(y), (1.1)
则称fI上的凸函数. 若不等式(1.1)的反向不等式成立,则称fI上的凹函数.

f:[a,b]RR[a,b]上的凸函数, 则Hermite-Hadamard型积分不等式为

f(a+b2)1babaf(x)dxf(a)+f(b)2. (1.2)
fI上的凹函数,则不等式(1.2)的反向不等式成立.

文献[8]中引入了s -凸函数的概念.

定义1.2[8] 设函数f:IR0=[0,+)R,s(0,1],若对任意的x,yI和任意的$\lambda\in[0, 1]$,有

f(λx+(1λ)y)λsf(x)+(1λ)sf(y), (1.3)
则称fI上的s -凸函数.

关于上述两类凸函数的Hermite-Hadamard型积分不等式,有如下一些结果.

定理1.1[6] 设函数f:IRRI内可微,a,bI,且a<b.

(1)~ 若|f|为区间[a,b]上的凸函数,则

|f(a)+f(b)21babaf(x)dx|(ba)(|f(a)|+|f(b)|)8. (1.4)

(2)~ 若|f|p/(p1)为区间[a,b]上的凸函数,p>1,则

|f(a)+f(b)21babaf(x)dx|ba2(p+1)1/p[|f(a)|pp1+|f(b)|pp12](p1)/p. (1.5)

定理1.2[11] 设函数f:IRRI内可微,a,bI, 且a<b. 若|f|q为区间[a,b] 上的凸函数,则

|f(a)+f(b)21babaf(x)dx|ba4[|f(a)|q+|f(b)|q2]1/q (1.6)
|f(a+b2)1babaf(x)dx|ba4[|f(a)|q+|f(b)|q2]1/q. (1.7)

定理1.3[10] 设函数f:IRR为可微函数,a,bI,且a<b. 若|f|p/(p1)为区间 [a,b]上的凸函数,p>1,则

|1babaf(x)dxf(a+b2)|ba16(4p+1)1/p{[|f(a)|p/(p1)+3|f(b)|p/(p1)](p1)/p+[3|f(a)|p/(p1)+|f(b)|p/(p1)](p1)/p} (1.8)
|1babaf(x)dxf(a+b2)|ba4(4p+1)1/p(|f(a)|+|f(b)|). (1.9)

定理1.4[14] 函数f:IRR为可微函数,a,bI, 且a<b.%,fL1([a,b]). 若|f|q 为区间[a,b]上的凸函数,q1,则

|16[f(a)+f(b)+4f(a+b2)]1babaf(x)dx|ba12[2q+1+13(q+1)]1/q[(3|f(a)|q+|f(b)|q4)1/q+(|f(a)|q+3|f(b)|q4)1/q] (1110)
|16[f(a)+f(b)+4f(a+b2)]1babaf(x)dx|5(ba)72[(61|f(a)|q+29|f(b)|q90)1/q+(29|f(a)|q+61|f(b)|q90)1/q]. (1.11)

定理1.5[1] 设函数f:IR0R为可微函数,a,bI满足a<b, s(0,1],且fL1([a,b]).

(1)~ 若|f|p/(p1)[a,b]上的s -凸函数,则

|f(a+b2)1babaf(x)dx|ba4(1p+1)1/p(1s+1)2/q{[(21s+s+1)|f(a)|q+21s|f(b)|q]1/q+[21s|f(a)|q+(21s+s+1)|f(b)|q]1/q}, (11.12)
其中p>1q>1满足1p+1q=1.

(2)~ 若|f|q[a,b]上的s -凸函数,q1,则

|f(a+b2)1babaf(x)dx|ba8[2(s+1)(s+2)]1/q{[(21s+1)|f(a)|q+21s|f(b)|q]1/q+[(21s+1)|f(b)|q+21s|f(a)|q]1/q}. (11.13)

最近几年,众多文献研究了其它类型的凸函数的Hermite-Hadamard型积分不等式, 如见文献[2, 3, 4, 5, 7, 9, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

本文将定义``s -对数凸函数'',并建立s -对数凸函数的若干个Hermite-Hadamard型积分不等式. 作为应用给出平均数的几个不等式.

2 s-对数凸函数

下面,我们回忆熟知的对数凸函数的定义.

定义2.1 设函数f:IRR+=(0,),若对任意的x,yI和任意的$\lambda\in[0, 1]$,有

f(λx+(1λ)y)[f(x)]λ[f(y)]1λ, (2.1)
则称fI上的对数凸函数. 若不等式(2.1)的反向不等式成立,则称fI上的对数凹函数.

结合定义1.2和2.1,我们引入一类新的凸函数: s -对数凸函数.

定义2.2s(0,1],函数f:IRR+,若对任意的x,yI和任意的$\lambda\in[0, 1]$,有

f(λx+(1λ)y)[f(x)]λs[f(y)](1λ)s, (2.2)
则称fI上的s -对数凸函数.

特别,若s=1,则s -对数凸函数就是定义2.1所定义的对数凸函数.

注2.1s(0,1],函数f:IRR+I上的s -对数凸函数,则

(1)~ 函数lnfI上的s -凸函数;

(2)~ 若s(0,1),那么对任意的xI,有f(x)1.

实际上,对任意的x,yI和任意的λ[0,1],有 lnf(λx+(1λ)y)λslnf(x)+(1λ)slnf(y) 且特别取y=x,λ=12时,有lnf(x)21slnf(x).

3 积分等式

为了建立s -对数凸函数的Hermite-Hadamard型积分不等式,我们给出如下的积分等式.

引理3.1 设函数f:IRR为可微函数,a,bI,且a<b. 若fL1([a,b]),则

1babaf(x)dxf(a)=ba410[(1+t)f(1+t2a+1t2b)+tf(t2a+2t2b)]dt (3.1)
f(b)1babaf(x)dx=ba410[(1t)f(1+t2a+1t2b)+(2t)f(t2a+2t2b)]dt. (3.2)

运用分部积分法以及变量替换,可得 10[(1+t)f(1+t2a+1t2b)+tf(t2a+2t2b)]dt=2ba[f(a+b2)2f(a)2baa(a+b)/2f(x)dx2ba(a+b)/2bf(x)dxf(a+b2)]=4ba[1babaf(x)dxf(a)].

同理,可得 10[(1t)f(1+t2a+1t2b)+(2t)f(t2a+2t2b)]dt=4ba[f(b)1babaf(x)dx]. 故引理3.1证毕.

推论3.1 设函数f:IRR为可微函数,a,bI,且a<b. 若fL1([a,b]),则

f(a)+f(b)21babaf(x)dx=ba210[(1t)f(t2a+2t2b)tf(1+t2a+1t2b)]dt. (3.3)

引理3.2[6] 设函数f:IRR为可微函数,a,bI,且a<b. 若fL1([a,b]),则 f(a)+f(b)21babaf(x)dx=ba210(12t)f(ta+(1t)b)dt.

由推论3.1可证得(3.4)式.

4 s -对数凸函数的积分不等式

现在建立s -对数凸函数的Hermite-Hadamard型积分不等式.

定理4.1 设函数f:IRR为可微函数,a,bI,且a<b, 且fL1([a,b]),q1s(0,1]. 若|f|q[a,b]上的s -对数凸函数,则

|f(a)1babaf(x)dx|ba4(12)(q1)/q|f(a)f(b)|1s/2{3(q1)/q[F1(μ)]1/q+[F2(μ1)]1/q}, (4.1)
其中
F1(u)={1lnu(2u1u1lnu),  u1,32,u=1,u>0, (4.2)
F2(u)={1lnu(u1lnu1),  u1,[3mm]12,u=1,u>0 (4.3)
μ=|f(a)f(b)|sq/2. (4.4)

利用引理3.1中的式(3.1),定义2.2以及Hölder积分不等式,我们有

|f(a)1babaf(x)dx|ba410[(1+t)|f(1+t2a+1t2b)|+t|f(t2a+2t2b)|]dtba4{(10(1+t)dt)(q1)/q[10(1+t)|f(1+t2a+1t2b)|qdt]1/q+(10tdt)(q1)/q[10t|f(t2a+2t2b)|qdt]1/q}ba4(12)(q1)/q{3(q1)/q[10(1+t)|f(a)|q[(1+t)/2]s|f(b)|q[(1t)/2]sdt]1/q+[10t|f(a)|q(t/2)s|f(b)|q(1t/2)sdt]1/q}. (4.5)

1η,0t1,且0<s1. 则由文献[2]

ηtsηst+1s. (4.6)

0<s<1,由|f|qs -对数凸性,有|f(a)|,|f(b)|1,利用不等式(4.6),我们得到

10(1+t)|f(a)|q[(1+t)/2]s|f(b)|q[(1t)/2]sdt10(1+t)|f(a)|q[s(1+t)/2+1s]|f(b)|q[s(1t)/2+1s]dt=|f(a)f(b)|(1s/2)q10(1+t)μtdt=|f(a)f(b)|(1s/2)qF1(μ) (4.7)
10t|f(a)|q(t/2)s|f(b)|q(1t/2)sdt10t|f(a)|q[st/2+1s]|f(b)|q[s(2t)/2+1s]dt=|f(a)|(1s)q|f(b)|q10tμtdt=|f(a)f(b)|(1s/2)qF2(μ1). (4.8)
由上述不等式,我们有
|f(a)1babaf(x)dx|ba4(12)(q1)/q{3(q1)/q[10(1+t)|f(a)|q[(1+t)/2]s|f(b)|q[(1t)/2]sdt]1/q+[10t|f(a)|q(t/2)s|f(b)|q[(2t)/2]sdt]1/q}ba4(12)(q1)/q|f(a)f(b)|1s/2{3(q1)/q[F1(μ)]1/q+[F2(μ1)]1/q}. (4.9)

s=1,则不等式(4.7)和(4.8)等号成立, 从而不等式(4.9)成立. 故定理4.1证毕.

定理4.2 在定理4.1的条件下,则

|f(b)1babaf(x)dx|ba4(12)(q1)/q|f(a)f(b)|1s/2{[F2(μ)]1/q+3(q1)/q[F1(μ1)]1/q}, (4.10)
其中F1(u),F2(u)μ由(4.2)至(4.4)式所定义.

由引理3.1中的式(3.2),定义2.2和Hölder积分不等式,我们有 |f(b)1babaf(x)dx|ba4{[10(1t)dt](q1)/q[10(1t)|f(1+t2a+1t2b)|qdt]1/q+(10(2t)dt)(q1)/q[10(2t)|f(t2a+2t2b)|qdt]1/q}ba4(12)(q1)/q{[10(1t)|f(a)|q[(1+t)/2]s|f(b)|q[(1t)/2]sdt]1/q+3(q1)/q[10(2t)|f(a)|q(t/2)s|f(b)|q(1t/2)sdt]1/q}.

0<s<1,有|f(a)|1,|f(b)|1, 从而由不等式(4.6),我们得到 10(1t)|f(a)|q[(1+t)/2]s|f(b)|q[(1t)/2]sdt|f(a)f(b)|(1s/2)q10(1t)μtdt=|f(a)f(b)|(1s/2)qF2(μ)10(2t)|f(a)|q(t/2)s|f(b)|q(1t/2)sdt|f(a)|(1s)q|f(b)|q10(2t)μtdt=|f(a)f(b)|(1s/2)qF1(μ1). 由此,我们可推得

|f(b)1babaf(x)dx|ba4(12)(q1)/q{[10(1t)|f(a)|q[(1+t)/2]s|f(b)|q[(1t)/2]sdt]1/q+3(q1)/q[10(2t)|f(a)|q(t/2)s|f(b)|q[(2t)/2]sdt]1/q}ba4(12)(q1)/q|f(a)f(b)|1s/2{[F2(μ)]1/q+3(q1)/q[F1(μ1)]1/q}. (4.11)

s=1,则不等式(4.11)也成立. 从而定理4.2获证. \hfill\rule{0.8mm}{3.5mm}

定理4.3 定理4.1的条件下,有

|f(a)+f(b)21babaf(x)dx|ba4(12)(q1)/q|f(a)f(b)|1s/2{[μF2(μ1)]1/q+[μ1F2(μ)]1/q}, (4.12)
其中F2(u)μ由(4.3)和(4.4)式所定义.

由推论3.1中式(3.4),定义2.2和Hölder积分不等式,我们可推得 |f(a)+f(b)21babaf(x)dx|ba4{(10tdt)(q1)/q[10t|f(1+t2a+1t2b)|qdt]1/q+(10(1t)dt)(q1)/q[10(1t)|f(t2a+2t2b)|qdt]1/q}ba4(12)(q1)/q{[10t|f(a)|q[(1+t)/2]s|f(b)|q[(1t)/2]sdt]1/q+[10(1t)|f(a)|q(t/2)s|f(b)|q(1t/2)sdt]1/q}ba4(12)(q1)/q|f(a)f(b)|1s/2{[μF2(μ1)]1/q+[μ1F2(μ)]1/q}. 故定理4.3证毕.

5 平均数中的应用

a>0,b>0,且sR,定义 A(a,b)=a+b2,H(a,b)=2aba+b,I(a,b)={1e(bbaa)1/(ba),  ab,a,a=bLs(a,b)={[bs+1as+1(s+1)(ba)]1/s,  s0,1,ab,balnblna,s=1,ab,I(a,b),s=0,ab,a,a=b.

显然,A,H,L=L1,I=L0Ls分别是正数a,b的算术、调和、对数、 指数和广义对数平均数.

下面,我们利用上节的定理,建立与平均数有关的几个不等式.

定理5.10<a<b1,r<0,r1,s(0,1],且q1.

(1)~ 若r2,则 |A(ar+1,br+1)[Lr+1(a,b)]r+1|ba4|r+1|(12)(q1)/q[2srq(lnalnb)]1/q×{a(1s/2)rb(1s)r(asrq/2[Lsrq/21(a,b)]srq/21L(a,b))1/q+a(1s)rb(1s/2)r([Lsrq/21(a,b)]srq/21L(a,b)bsrq/2)1/q}.

(2)~ 若r=2,则 0<1H(a,b)1I(a,b)ba4(12)(q1)/q[1sq(lnblna)]1/q×{as2b2(s1)(asq[Lsq1(a,b)]sq1L(a,b))1/q+a2(s1)b2s([Lsq1(a,b)]sq1L(a,b)bsq)1/q}.

f(x)=1r+1xr+10<x1. 则我们可推知函数|f(x)|q(0,1]上的s -对数凸函数, 且 μ=|f(a)f(b)|sq/2=(ab)srq/2. 于是,我们有 F2(μ1)=2srq(lnblna){2srq(lnblna)[(ba)srq/21]1}F2(μ)=2srq(lnalnb){2srq(lnalnb)[(ab)srq/21]1}. 把上述等式代入定理4.3可推得结果.

参考文献
[1] Alomari M W, Darus M, Kirmaci U S. Some inequalities of Hermite-Hadamard type for s-convex functions. Acta Math Sci, 2011, 31(4): 1643-1652
[2] Bai R F, Qi F, Xi B Y. Hermite-Hadamard type inequalities for the m- and (α,m)-logarithmically convex functions. Filomat, 2013, 27(1): 1-7
[3] Bai S P, Wang S H, Qi F. Some Hermite-Hadamard type inequalities for n-time differentiable (α,m)-convex functions. J Inequal Appl, 2012, 2012: 267, 11pages
[4] Chun L, Qi F. Integral inequalities of Hermite-Hadamard type for functions whose 3rd derivatives are s-convex. Appl Math, 2012, 3(11): 1680-1685
[5] Chun L, Qi F. Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex. J Inequal Appl, 2013, 2013: 451
[6] Dragomir S S, Agarwal R P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl Math Lett, 1998, 11(5): 91-95
[7] Dragomir S S, Agarwal R P, Cerone P. On Simpson's inequality and applications. J Inequal Appl, 2000, 5(6): 533-579
[8] Hudzik H, Maligranda L. Some remarks on s-convex functions. Aequationes Math, 1994, 48: 100-111
[9] Jiang W D, Niu D W, Hua Y, Qi F. Generalizations of Hermite-Hadamard inequality to n-time differentiable functions which are s-convex in the second sense. Analysis (Munich), 2012, 32(3): 209-220
[10] Kirmaci U S. Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl Math Comput, 2004, 147(1): 137-146
[11] Pearce C E M, Pečarić J. Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl Math Lett, 2000, 13(2): 51-55
[12] Qi F, Wei Z L, Yang Q. Generalizations and refinements of Hermite-Hadamard's inequality. Rocky Mountain J Math, 2005, 35(1): 235-251
[13] Sarikaya M Z, Aktan N. On the generalization of some integral inequalities and their applications. Math Comput Model, 2011, 54: 2175-2182
[14] Sarikaya M Z, Set E, Özdemir M E. On new inequalities of Simpson's type for convex functions. Comput Math Appl, 2010, 60(8): 2191-2199
[15] Shuang Y, Yin H P, Qi F. Hermite-Hadamard type integral inequalities for geometric-arithmetically s-convex functions. Analysis (Munich), 2013, 33(2):197-208
[16] Wang S H, Xi B Y, Qi F. On Hermite-Hadamard type inequalities for (α,m)-convex functions. Int J Open Probl Comput Sci Math, 2012, 5(4): 47-56
[17] Wang S H, Xi B Y, Qi F. Some new inequalities of Hermite-Hadamard type for n-time differentiable functions which are m-convex. Analysis (Munich), 2012, 32(3): 247-262
[18] Xi B Y, Bai R F, Qi F. Hermite-Hadamard type inequalities for the m- and (α,m)-geometrically convex functions. Aequationes Math, 2012, 84(3): 261-269
[19] Xi B Y, Qi F. Hermite-Hadamard type inequalities for functions whose derivatives are of convexities. Nonlinear Funct Anal Appl, 2013, 18(2): 163-176
[20] Xi B Y, Qi F. Some Hermite-Hadamard type inequalities for differentiable convex functions and applications. Hacet J Math Stat, 2013, 42(3): 243-257
[21] Xi B Y, Qi F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J Funct Spaces Appl, 2012, Article ID 980438: 14pages
[22] Xi B Y, Qi F. Some inequalities of Hermite-Hadamard type for h-convex functions. Adv Inequal Appl, 2013, 2(1): 1-15
[23] Xi B Y, Qi F. Hermite-Hadamard type inequalities for geometrically r-convex functions. Studia Scientiarum Mathematicarum Hungarica, 2014, 51(4): 530-546
[24] Xi B Y, Wang S H, Qi F. Some inequalities of Hermite-Hadamard type for functions whose 3rd derivatives are P-convex. Appl Math, 2012, 3(12): 1898-1902
[25] Xi B Y, Wang Y, Qi F. Some integral inequalities of Hermite-Hadamard type for extended (s,m)-convex functions. Transylv J Math Mech, 2013, 5(1): 69-84
[26] Xi B Y, Wang S H, Qi F. Some inequalities for (h,m)-convex functions. Journal of Inequalities and Applications, 2014, 2014: 100, 12pages
[27] Zhang T Y, Ji A P, Qi F. Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means. Matematiche (Catania), 2013, 68(1): 229-239
s-对数凸函数的Hermite-Hadamard型积分不等式
席博彦, 祁锋