数学物理学报  2015, Vol. 35 Issue (3): 515-524   PDF (245 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
席博彦
祁锋
s-对数凸函数的Hermite-Hadamard型积分不等式
席博彦1, 祁锋2     
1. 内蒙古民族大学数学学院 内蒙古 通辽市 028043;
2. 天津工业大学理学院数学系 天津市 300387
摘要:该文定义了"s-对数凸函数"的概念, 并给出了可微s-对数凸函数的若干个 Hermite-Hadamard型积分不等式, 作为应用给出了平均数的几个不等式.
关键词积分不等式     积分等式     Hermite-Hadamard积分不等式     凸函数     s-对数凸函数    
Some Integral Inequalities of Hermite-Hadamard Type for s-Logarithmically Convex Functions
Xi Boyan1, Qi Feng2    
1. College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043;
2. Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin 300387
Abstract: In the paper, we introduce the notion "s-logarithmically convex function", establish some new integral inequalities of Hermite-Hadamard type for functions the power of the absolute of whose first derivative is s-logarithmically convex, and apply these newly obtained inequalities to means.
Key words: Integral inequality     Integral identity     Hermite-Hadamard's integral inequality     Convex function     s-Logarithmically convex function    
1 引言

首先,我们引进入众所周知的凸函数的定义.

定义1.1 设函数$f:I\subseteq{\Bbb R}=(-\infty,+\infty)\to{\Bbb R}$, 若对任意的$x,y\in I$和任意的$\lambda\in[0, 1]$,有

\begin{equation}\label{convex-dfn} f(\lambda x+(1-\lambda)y)\le \lambda f(x)+(1-\lambda)f(y), \end{equation} (1.1)
则称$f$为$I$上的凸函数. 若不等式(1.1)的反向不等式成立,则称$f$为$I$上的凹函数.

设$f:[a,b]\subseteq{\Bbb R}\to{\Bbb R}$为$[a,b]$上的凸函数, 则Hermite-Hadamard型积分不等式为

\begin{equation}\label{H-H-OP-1} f\left(\frac{a+b}{2}\right)\le\frac{1}{b-a}\int_a^bf(x){\rm d} x \le\frac{f(a)+f(b)}{2}. \end{equation} (1.2)
若$f$为$I$上的凹函数,则不等式(1.2)的反向不等式成立.

文献[8]中引入了$s$ -凸函数的概念.

定义1.2[8] 设函数$f:I\subseteq{\Bbb R}_0=[0,+\infty)\to{\Bbb R}$,$s\in(0,1]$,若对任意的$x,y\in I$和任意的$\lambda\in[0, 1]$,有

\begin{equation} f(\lambda x+(1-\lambda)y)\le \lambda^sf(x)+(1-\lambda)^sf(y), \end{equation} (1.3)
则称$f$为$I$上的$s$ -凸函数.

关于上述两类凸函数的Hermite-Hadamard型积分不等式,有如下一些结果.

定理1.1[6] 设函数$f:I\subseteq{\Bbb R}\to{\Bbb R}$在$I^\circ$内可微,$a,b\in I^\circ$,且$a<b$.

(1)~ 若$| f'| $为区间$[a,b]$上的凸函数,则

\begin{equation} \biggl|\frac{f(a)+f(b)}2-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr|\le\frac{(b-a)(|f'(a)|+|f'(b)|)}8. \end{equation} (1.4)

(2)~ 若$| f'| ^{p/(p-1)}$为区间$[a,b]$上的凸函数,$p>1$,则

\begin{equation} \biggl| \frac{f(a)+f(b)}2-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr| \le\frac{b-a}{2(p+1)^{1/p}} \biggl[\frac{| f'(a)| ^{\frac{p}{p-1}}+| f'(b)| ^{\frac{p}{p-1}}}2\biggr]^{(p-1)/p}. \end{equation} (1.5)

定理1.2[11] 设函数$f:I\subseteq{\Bbb R}\to{\Bbb R}$在$I^\circ$内可微,$a,b\in I^\circ$, 且$a<b$. 若$|f'|^{q}$为区间$[a,b]$ 上的凸函数,则

\begin{equation} \biggl| \frac{f(a)+f(b)}2-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr| \le\frac{b-a}4 \biggl[\frac{| f'(a)| ^q+| f'(b)| ^q}2\biggr]^{1/q} \end{equation} (1.6)
\begin{equation} \biggl| f\biggl(\frac{a+b}2\biggr)-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr| \le\frac{b-a}4 \biggl[\frac{| f'(a)| ^q+| f'(b)| ^q}2\biggr]^{1/q}. \end{equation} (1.7)

定理1.3[10] 设函数$f:I\subseteq{\Bbb R}\to{\Bbb R}$为可微函数,$a,b\in I$,且$a<b$. 若$| f'| ^{p/(p-1)}$为区间 $[a,b]$上的凸函数,$p>1$,则

\begin{eqnarray} &&\biggl| \frac1{b-a}\int_a^bf(x){\rm d}x -f\biggl(\frac{a+b}2\biggr)\biggr| \nonumber\\ & \le& \frac{b-a}{16}\biggl(\frac4{p+1}\biggr)^{1/p} \Bigl\{\bigl[| f'(a)| ^{p/(p-1)} +3| f'(b)| ^{p/(p-1)}\bigr]^{(p-1)/p} \nonumber\\ && +\bigl[3| f'(a)| ^{p/(p-1)}+| f'(b)| ^{p/(p-1)}\bigr]^{(p-1)/p}\Bigr\} \end{eqnarray} (1.8)
\begin{equation} \biggl| \frac1{b-a}\int_a^bf(x){\rm d}x -f\biggl(\frac{a+b}2\biggr)\biggr| \le\frac{b-a}4\biggl(\frac4{p+1}\biggr)^{1/p}(| f'(a)| +| f'(b)| ). \end{equation} (1.9)

定理1.4[14] 函数$f:I\subseteq{\Bbb R}\to{\Bbb R}$为可微函数,$a,b\in I$, 且$a<b$.%,$f'\in L_1([a,b])$. 若$|f'|^q$ 为区间$[a,b]$上的凸函数,$q\ge1$,则

\begin{eqnarray} &&\biggl|\frac16\biggl[{f(a)+f(b)}+4f\biggl(\frac{a+b}2\biggr)\biggr] -\frac1{b-a}\int_a^bf(x){\rm d}x\biggr| \nonumber\\ & \le&\frac{b-a}{12}\biggl[\frac{2^{q+1}+1}{3(q+1)}\biggr]^{1/q} \biggl[\biggl(\frac{3|f'(a)|^q+|f'(b)|^q}4\biggr)^{1/q} +\biggl(\frac{|f'(a)|^q+3|f'(b)|^q}4\biggr)^{1/q}\biggr] \end{eqnarray} (1110)
\begin{eqnarray} &&\biggl|\frac16\biggl[{f(a)+f(b)}+4f\biggl(\frac{a+b}2\biggr)\biggr] -\frac1{b-a}\int_a^bf(x){\rm d}x\biggr| \nonumber\\ & \le&\frac{5(b-a)}{72} \biggl[\biggl(\frac{61|f'(a)|^q+29|f'(b)|^q}{90}\biggr)^{1/q} +\biggl(\frac{29|f'(a)|^q+61|f'(b)|^q}{90}\biggr)^{1/q} \biggr]. \end{eqnarray} (1.11)

定理1.5[1] 设函数$f:I\subseteq{\Bbb R}_0\to{\Bbb R}$为可微函数,$a,b\in I$满足$a<b$, $s\in(0,1]$,且$f'\in L_1([a,b])$.

(1)~ 若$|f'|^{p/(p-1)}$为$[a,b]$上的$s$ -凸函数,则

\begin{eqnarray} &&\biggl|f\biggl(\frac{a+b}2\biggr)-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr| \nonumber\\ & \le&\frac{b-a}4\biggl(\frac1{p+1}\biggr)^{1/p}\biggl(\frac1{s+1}\biggr)^{2/q} \Bigl\{\bigl[\bigl(2^{1-s}+s +1\bigr)|f'(a)|^q+2^{1-s}|f'(b)|^q\bigr]^{1/q} \nonumber\\ && +\bigl[2^{1-s}|f'(a)|^q+\bigl(2^{1-s}+s+1\bigr)|f'(b)|^q\bigr]^{1/q}\Bigr\}, \end{eqnarray} (11.12)
其中$p>1$和$q>1$满足$\frac1p+\frac1q=1$.

(2)~ 若$|f'|^q$为$[a,b]$上的$s$ -凸函数,$q\ge1$,则

\begin{eqnarray} && \biggl|f\biggl(\frac{a+b}2\biggr)-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr| \nonumber\\ & \le&\frac{b-a}8\biggl[\frac2{(s+1)(s+2)}\biggr]^{1/q} \Bigl\{\bigl[\bigl(2^{1-s}+1\bigr)|f'(a)|^q +2^{1-s}|f'(b)|^q\bigr]^{1/q} \nonumber\\ && +\bigl[\bigl(2^{1-s}+1\bigr)|f'(b)|^q +2^{1-s}|f'(a)|^q\bigr]^{1/q}\Bigr\}. \end{eqnarray} (11.13)

最近几年,众多文献研究了其它类型的凸函数的Hermite-Hadamard型积分不等式, 如见文献[2, 3, 4, 5, 7, 9, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

本文将定义``$s$ -对数凸函数'',并建立$s$ -对数凸函数的若干个Hermite-Hadamard型积分不等式. 作为应用给出平均数的几个不等式.

2 $s$-对数凸函数

下面,我们回忆熟知的对数凸函数的定义.

定义2.1 设函数$f:I\subseteq{\Bbb R}\to{\Bbb R}_+=(0,\infty)$,若对任意的$x,y\in I$和任意的$\lambda\in[0, 1]$,有

\begin{equation} f(\lambda x+(1-\lambda)y)\le [f(x)]^\lambda [f(y)]^{1-\lambda}, \end{equation} (2.1)
则称$f$为$I$上的对数凸函数. 若不等式(2.1)的反向不等式成立,则称$f$为$I$上的对数凹函数.

结合定义1.2和2.1,我们引入一类新的凸函数: $s$ -对数凸函数.

定义2.2 设$s\in(0,1]$,函数$f:I\subseteq{\Bbb R}\to{\Bbb R}_+$,若对任意的$x,y\in I$和任意的$\lambda\in[0, 1]$,有

\begin{equation}\label{s-log-conv-dfn-ineq} f(\lambda x+(1-\lambda)y)\le [f(x)]^{\lambda^s}[f(y)]^{(1-\lambda)^s}, \end{equation} (2.2)
则称$f$为$I$上的$s$ -对数凸函数.

特别,若$s=1$,则$s$ -对数凸函数就是定义2.1所定义的对数凸函数.

注2.1 设$s\in(0,1]$,函数$f:I\subseteq{\Bbb R}\to{\Bbb R}_+$为$I$上的$s$ -对数凸函数,则

(1)~ 函数$\ln f$为$I$上的$s$ -凸函数;

(2)~ 若$s\in(0,1)$,那么对任意的$x\in I$,有$f(x)\ge 1$.

实际上,对任意的$x,y\in I$和任意的$\lambda\in[0,1]$,有 $$ \ln f(\lambda x+(1-\lambda)y)\le \lambda^s\ln f(x)+(1-\lambda)^s\ln f(y) $$ 且特别取$y=x,\lambda=\frac{1}{2}$时,有$\ln f(x)\le2^{1-s}\ln f(x).$

3 积分等式

为了建立$s$ -对数凸函数的Hermite-Hadamard型积分不等式,我们给出如下的积分等式.

引理3.1 设函数$f:I\subseteq{\Bbb R}\to{\Bbb R}$为可微函数,$a,b\in I$,且$a<b$. 若$f'\in L_1([a,b])$,则

\begin{eqnarray}\label{s-xi-qi-lem-2} &&\frac1{b-a}\int_a^bf(x){\rm d}x-f(a) \nonumber\\ &=& \frac{b-a}4\int_0^1\biggl[(1+t)f'\biggl(\frac{1+t}{2}a+\frac{1-t}{2}b\biggr) +tf'\biggl(\frac{t}2a+\frac{2-t}{2}b\biggr)\biggr]{\rm d} t \end{eqnarray} (3.1)
\begin{eqnarray}\label{s-xi-qi-lem-3} && f(b)-\frac1{b-a}\int_a^bf(x){\rm d}x \nonumber\\ &=&\frac{b-a}4\int_0^1\left[(1-t)f'\left(\frac{1+t}{2}a+\frac{1-t}{2}b\right) +(2-t)f'\left(\frac{t}2a+\frac{2-t}{2}b\right)\right]{\rm d}t. \end{eqnarray} (3.2)

运用分部积分法以及变量替换,可得 \begin{eqnarray*} &&\int_0^1\biggl[(1+t)f'\biggl(\frac{1+t}{2}a+\frac{1-t}{2}b\biggr) +tf'\biggl(\frac{t}2a+\frac{2-t}{2}b\biggr)\biggr]{\rm d}t\\ &=&\frac2{b-a}\biggl[f\biggl(\frac{a+b}2\biggr)-2f(a)-\frac2{b-a}\int_{(a+b)/2}^af(x){\rm d} x\\ &&-\frac2{b-a}\int_b^{(a+b)/2}f(x){\rm d}x-f\biggl(\frac{a+b}2\biggr)\biggr] \\ &=&\frac4{b-a}\biggl[\frac1{b-a}\int_a^bf(x){\rm d}x-f(a)\biggr]. \end{eqnarray*}

同理,可得 \begin{eqnarray*} &&\int_0^1\biggl[(1-t)f'\biggl(\frac{1+t}{2}a+\frac{1-t}{2}b\biggr) +(2-t)f'\biggl(\frac{t}2a+\frac{2-t}{2}b\biggr)\biggr]{\rm d}t\\ &=&\frac4{b-a}\biggl[f(b)-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr]. \end{eqnarray*} 故引理3.1证毕.

推论3.1 设函数$f:I\subseteq{\Bbb R}\to{\Bbb R}$为可微函数,$a,b\in I$,且$a<b$. 若$f'\in L_1([a,b])$,则

\begin{eqnarray} && \frac{f(a)+f(b)}2-\frac1{b-a}\int_a^bf(x){\rm d}x \nonumber\\ &=& \frac{b-a}2\int_0^1 \biggl[(1-t)f'\biggl(\frac{t}2a+\frac{2-t}{2}b\biggr) -tf'\biggl(\frac{1+t}{2}a+\frac{1-t}{2}b\biggr)\biggr]{\rm d}t. \end{eqnarray} (3.3)

引理3.2[6] 设函数$f:I\subseteq{\Bbb R}\to{\Bbb R}$为可微函数,$a,b\in I$,且$a<b$. 若$f'\in L_1([a,b])$,则 \begin{equation}\label{3.4-wuhan} \frac{f(a)+f(b)}2-\frac1{b-a}\int_a^bf(x){\rm d}x=\frac{b-a}2\int_0^1(1-2t)f'(ta+(1-t)b){\rm d}t. \end{equation}

由推论3.1可证得(3.4)式.

4 $s$ -对数凸函数的积分不等式

现在建立$s$ -对数凸函数的Hermite-Hadamard型积分不等式.

定理4.1 设函数$f:I\subseteq{\Bbb R}\to{\Bbb R}$为可微函数,$a,b\in I$,且$a<b$, 且$f'\in L_1([a,b])$,$q\ge1$ 和 $s\in(0,1]$. 若$|f'|^q$为$[a,b]$上的$s$ -对数凸函数,则

\begin{eqnarray} &&\biggl|f(a)-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr| \nonumber\\ &\le& \frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q}|f'(a)f'(b)|^{1-s/2} \Bigl\{3^{(q-1)/q}\bigl[F_1(\mu)\bigl]^{1/q}+\bigl[F_2(\mu^{-1})\bigr]^{1/q}\Bigl\}, \end{eqnarray} (4.1)
其中
\begin{equation}\label{mu-dfn=4.1} F_1(u)= \left\{\begin{array}{ll} \frac1{\ln u}\biggl(2u-1-\frac{u-1}{\ln u}\biggr),~~ &u\ne1,\\[3mm] \frac32,& u=1, \end{array}\right. u>0, \end{equation} (4.2)
\begin{equation} \label{mu-dfn=4.2} F_2(u)= \left\{\begin{array}{ll} \frac1{\ln u}\biggl(\frac{u-1}{\ln u}-1\biggr),~~ &u\ne1,\\ [3mm] \frac12,& u=1, \end{array}\right. u>0 \end{equation} (4.3)
\begin{equation}\label{mu-dfn=4} \mu=\biggl|\frac{f'(a)}{f'(b)}\biggr|^{sq/2}. \end{equation} (4.4)

利用引理3.1中的式(3.1),定义2.2以及Hölder积分不等式,我们有

\begin{eqnarray}\label{mu-dfn=5} &&\biggl|f(a)-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr|\nonumber\\ &\le &\frac{b-a}4\int_0^1\biggl[(1+t)\biggl|f'\biggl(\frac{1+t}{2}a+\frac{1-t}{2}b\biggr)\biggr| +t\biggl|f'\biggl(\frac{t}2a+\frac{2-t}{2}b\biggr)\biggr|\biggr]{\rm d}t\nonumber\\ &\le&\frac{b-a}4\Biggl\{\biggl(\int_0^1(1+t){\rm d}t\biggr)^{(q-1)/q} \biggl[\int_0^1(1+t)\biggl|f'\biggl(\frac{1+t}{2}a+\frac{1-t}{2}b\biggr)\biggr|^q{\rm d}t\biggr]^{1/q}\nonumber\\ &&+\biggl(\int_0^1t{\rm d}t\biggr)^{(q-1)/q} \biggl[\int_0^1t\biggl|f'\biggl(\frac{t}2a+\frac{2-t}{2}b\biggr)\biggr|^q{\rm d}t\biggr]^{1/q}\Biggr\}\nonumber\\ &\le&\frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q} \Biggl\{3^{(q-1)/q} \biggl[\int_0^1(1+t)|f'(a)|^{q[(1+t)/2]^s}|f'(b)|^{q[(1-t)/2]^s}{\rm d}t\biggr]^{1/q}\nonumber\\ &&+\biggl[\int_0^1t|f'(a)|^{q(t/2)^s}|f'(b)|^{q(1-t/2)^s}{\rm d}t\biggr]^{1/q}\Biggr\}. \end{eqnarray} (4.5)

设$%0<\xi\le 1\le \eta$,$0\le t\le1$,且$0<s\le1$. 则由文献[2]

\begin{equation}\label{mu-dfn=4.7} \eta^{t^s}\le \eta^{st+1-s}. \end{equation} (4.6)

若$0<s<1$,由$|f'|^q$的$s$ -对数凸性,有$|f'(a)|, |f'(b)|\ge1$,利用不等式(4.6),我们得到

\begin{eqnarray}\label{s-xi-qi-thm-1-5} &&\int_0^1(1+t)|f'(a)|^{q[(1+t)/2]^s}|f'(b)|^{q[(1-t)/2]^s}{\rm d} t \nonumber\\ &\le& \int_0^1(1+t)|f'(a)|^{q[s(1+t)/2+1-s]} |f'(b)|^{q[s(1-t)/2+1-s]}{\rm d} t \nonumber\\ &=&|f'(a)f'(b)|^{(1-s/2)q}\int_0^1(1+t)\mu^{t}{\rm d} t \nonumber\\ &=&|f'(a)f'(b)|^{(1-s/2)q}F_1(\mu) \end{eqnarray} (4.7)
\begin{eqnarray}\label{s-xi-qi-thm-1-6} &&\int_0^1t|f'(a)|^{q(t/2)^s}|f'(b)|^{q(1-t/2)^s}{\rm d}t \nonumber\\ &\le&\int_0^1t|f'(a)|^{q[st/2+1-s]}|f'(b)|^{q[s(2-t)/2+1-s]}{\rm d} t \nonumber\\ &=&|f'(a)|^{(1-s)q}|f'(b)|^{q}\int_0^1t\mu^{t}{\rm d}t \nonumber\\ &=&|f'(a)f'(b)|^{(1-s/2)q}F_2\bigl(\mu^{-1}\bigr). \end{eqnarray} (4.8)
由上述不等式,我们有
\begin{eqnarray}\label{s-xi-qi-thm-1-7} &&\biggl|f(a)-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr|\nonumber\\ &\le&\frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q}\biggl\{3^{(q-1)/q}\biggl[\int_0^1(1+t)|f'(a)|^{q[(1+t)/2]^s} |f'(b)|^{q[(1-t)/2]^s}{\rm d}t\biggr]^{1/q}\nonumber\\ &&+\biggl[\int_0^1t|f'(a)|^{q(t/2)^s} |f'(b)|^{q[(2-t)/2]^s}{\rm d}t\biggr]^{1/q}\biggr\}\nonumber\\ &\le&\frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q}|f'(a)f'(b)|^{1-s/2} \Bigl\{3^{(q-1)/q}\bigl[F_1(\mu)\bigl]^{1/q}+\bigl[F_2(\mu^{-1})\bigr]^{1/q}\Bigl\}. \end{eqnarray} (4.9)

若$s=1$,则不等式(4.7)和(4.8)等号成立, 从而不等式(4.9)成立. 故定理4.1证毕.

定理4.2 在定理4.1的条件下,则

\begin{eqnarray} &&\biggl|f(b)-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr| \nonumber\\ &\le&\frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q}|f'(a)f'(b)|^{1-s/2} \Bigl\{\bigl[F_2(\mu)\bigl]^{1/q}+3^{(q-1)/q}\bigl[F_1(\mu^{-1})\bigl]^{1/q}\Bigl\}, \end{eqnarray} (4.10)
其中$F_1(u)$,$F_2(u)$和$\mu$由(4.2)至(4.4)式所定义.

由引理3.1中的式(3.2),定义2.2和Hölder积分不等式,我们有 \begin{eqnarray*} &&\biggl|f(b)-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr|\\ &\le&\frac{b-a}4\biggl\{\biggl[\int_0^1(1-t){\rm d} t\biggr]^{(q-1)/q} \biggl[\int_0^1(1-t)\biggl|f'\biggl(\frac{1+t}{2}a+\frac{1-t}{2}b\biggr)\biggr|^q{\rm d}t\biggr]^{1/q}\\ &&+\biggl(\int_0^1(2-t){\rm d}t\biggr)^{(q-1)/q} \biggl[\int_0^1(2-t)\biggl|f'\biggl(\frac{t}2a+\frac{2-t}{2}b\biggr)\biggr|^q{\rm d}t\biggr]^{1/q}\biggr\}\\ &\le&\frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q} \biggl\{\biggl[\int_0^1(1-t) |f'(a)|^{q[(1+t)/2]^s}|f'(b)|^{q[(1-t)/2]^s}{\rm d}t\biggr]^{1/q} \\ && +3^{(q-1)/q} \biggl[\int_0^1(2-t)|f'(a)|^{q(t/2)^s}|f'(b)|^{q(1-t/2)^s}{\rm d}t\biggr]^{1/q}\biggr\}. \end{eqnarray*}

若$0<s<1$,有$|f'(a)|\ge1$,$|f'(b)|\ge1$, 从而由不等式(4.6),我们得到 \begin{eqnarray*} \int_0^1(1-t)|f'(a)|^{q[(1+t)/2]^s}|f'(b)|^{q[(1-t)/2]^s}{\rm d} t &\le&|f'(a)f'(b)|^{(1-s/2)q}\int_0^1(1-t)\mu^{t}{\rm d} t\\ &=&|f'(a)f'(b)|^{(1-s/2)q}F_2\bigl(\mu\bigr) \end{eqnarray*} 和 \begin{eqnarray*} \int_0^1(2-t)|f'(a)|^{q(t/2)^s}|f'(b)|^{q(1-t/2)^s}{\rm d} t &\le&|f'(a)|^{(1-s)q}|f'(b)|^{q}\int_0^1(2-t)\mu^{t}{\rm d} t\\ &=&|f'(a)f'(b)|^{(1-s/2)q}F_1\bigl(\mu^{-1}\bigr). \end{eqnarray*} 由此,我们可推得

\begin{eqnarray}\label{s-xi-qi-thm-2-7} &&\biggl|f(b)-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr|\nonumber\\ &\le&\frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q} \biggl\{\biggl[\int_0^1(1-t)|f'(a)|^{q[(1+t)/2]^s} |f'(b)|^{q[(1-t)/2]^s}{\rm d}t\biggr]^{1/q} \nonumber\\ &&+3^{(q-1)/q}\biggl[\int_0^1(2-t)|f'(a)|^{q(t/2)^s} |f'(b)|^{q[(2-t)/2]^s}{\rm d} t\biggr]^{1/q}\biggr\}\qquad\nonumber\\ &\le&\frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q}|f'(a)f'(b)|^{1-s/2} \Bigl\{\bigl[F_2(\mu)\bigl]^{1/q}+3^{(q-1)/q}\bigl[F_1(\mu^{-1})\bigl]^{1/q}\Bigl\}. \end{eqnarray} (4.11)

若$s=1$,则不等式(4.11)也成立. 从而定理4.2获证. \hfill\rule{0.8mm}{3.5mm}

定理4.3 定理4.1的条件下,有

\begin{eqnarray} &&\biggl|\frac{f(a)+f(b)}{2}-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr| \nonumber\\ &\le& \frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q}|f'(a)f'(b)|^{1-s/2} \Bigl\{\bigl[\mu F_2\bigl(\mu^{-1}\bigr)\bigr]^{1/q} +\bigl[\mu^{-1}F_2(\mu)\bigr]^{1/q}\Bigr\}, \end{eqnarray} (4.12)
其中$F_2(u)$和$\mu$由(4.3)和(4.4)式所定义.

由推论3.1中式(3.4),定义2.2和Hölder积分不等式,我们可推得 \begin{eqnarray*} &&\biggl|\frac{f(a)+f(b)}{2}-\frac1{b-a}\int_a^bf(x){\rm d}x\biggr|\\ &\le&\frac{b-a}4\biggl\{\biggl(\int_0^1t{\rm d}t\biggr)^{(q-1)/q} \biggl[\int_0^1t\biggl|f'\biggl(\frac{1+t}{2}a+\frac{1-t}{2}b\biggr)\biggr|^q{\rm d}t\biggr]^{1/q}\\ &&+\biggl(\int_0^1(1-t){\rm d} t\biggr)^{(q-1)/q} \biggl[\int_0^1(1-t)\biggl|f'\biggl(\frac{t}2a+\frac{2-t}{2}b\biggr)\biggr|^q{\rm d}t\biggr]^{1/q}\biggr\}\\ &\le&\frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q} \biggl\{\biggl[\int_0^1t|f'(a)|^{q[(1+t)/2]^s}|f'(b)|^{q[(1-t)/2]^s}{\rm d} t\biggr]^{1/q} \\ &&+\biggl[\int_0^1(1-t)|f'(a)|^{q(t/2)^s}|f'(b)|^{q(1-t/2)^s}{\rm d} t\biggr]^{1/q}\biggr\}\\ &\le&\frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q}|f'(a)f'(b)|^{1-s/2} \Bigl\{\bigl[\mu F_2\bigl(\mu^{-1}\bigr)\bigr]^{1/q} +\bigl[\mu^{-1}F_2(\mu)\bigr]^{1/q}\Bigr\}. \end{eqnarray*} 故定理4.3证毕.

5 平均数中的应用

设$a>0$,$b>0$,且$s\in{\Bbb R}$,定义 $$ A(a,b)=\frac{a+b}2,H(a,b)=\frac{2ab}{a+b}, I(a,b)=\left\{\begin{array}{ll} \frac1e\biggl(\frac{b^b}{a^a}\biggr)^{1/(b-a)},~~ &a\ne b,\\ a,&a=b \end{array}\right. $$ 和 $$ L_s(a,b)=\left\{\begin{array}{ll} \biggl[\frac{b^{s+1}-a^{s+1}}{(s+1)(b-a)}\biggr]^{1/s},~~& s\ne0,-1,a\ne b,\\[3mm] \frac{b-a}{\ln b-\ln a},& s=-1,a\ne b,\\[2mm] I(a,b),& s=0,a\ne b,\\ a,&a=b. \end{array}\right. $$

显然,$A$,$H$,$L=L_{-1}$,$I=L_0$和$L_s$分别是正数$a$,$b$的算术、调和、对数、 指数和广义对数平均数.

下面,我们利用上节的定理,建立与平均数有关的几个不等式.

定理5.1 设$0<a<b\le1$,$r<0$,$r\ne-1$,$s\in(0,1]$,且$q\ge1$.

(1)~ 若$r\ne-2$,则 \begin{eqnarray*} &&\bigl|A\bigl(a^{r+1},b^{r+1}\bigr)-[L_{r+1}(a,b)]^{r+1}\bigr| \\ &\le & \frac{b-a}4|r+1|\biggl(\frac12\biggr)^{(q-1)/q} \biggl[\frac{2}{srq(\ln a-\ln b)}\biggr]^{1/q}\\ &&\times\bigl\{a^{(1-s/2)r}b^{(1-s)r}\bigl(a^{srq/2}-[L_{srq/2-1}(a,b)]^{srq/2-1}L(a,b)\bigr)^{1/q}\\ &&+a^{(1-s)r}b^{(1-s/2)r}\bigl([L_{srq/2-1}(a,b)]^{srq/2-1}L(a,b)-b^{srq/2}\bigr)^{1/q}\bigr\}. \end{eqnarray*}

(2)~ 若$r=-2$,则 \begin{eqnarray*} 0&<&\frac1{H(a,b)}-\frac1{I(a,b)} \le\frac{b-a}4\biggl(\frac12\biggr)^{(q-1)/q} \biggl[\frac{1}{sq(\ln b-\ln a)}\biggr]^{1/q}\\ &&\times\bigl\{a^{s-2}b^{2(s-1)}\bigl(a^{-sq}-[L_{-sq-1}(a,b)]^{-sq-1}L(a,b)\bigr)^{1/q} \\ && +a^{2(s-1)}b^{2-s}\bigl([L_{-sq-1}(a,b)]^{-sq-1}L(a,b)-b^{-sq}\bigr)^{1/q}\bigr\}. \end{eqnarray*}

设$f(x)=\frac1{r+1}x^{r+1}$且$0<x\le1$. 则我们可推知函数$|f'(x)|^q$为$(0,1]$上的$s$ -对数凸函数, 且 $ \mu=\left|\frac{f'(a)}{f'(b)}\right|^{sq/2}=\left(\frac{a}b\right)^{srq/2}. $ 于是,我们有 $$ F_2\bigl(\mu^{-1}\bigr)=\frac{2}{srq(\ln b-\ln a)}\biggl\{\frac{2}{srq(\ln b-\ln a)}\biggl[\biggl(\frac{b}{a}\biggr)^{srq/2}-1\biggr]-1\biggr\} $$ 和 $$ F_2(\mu)=\frac{2}{srq(\ln a-\ln b)}\biggl\{\frac{2}{srq(\ln a-\ln b)}\biggl[\biggl(\frac{a}{b}\biggr)^{srq/2}-1\biggr]-1\biggr\}. $$ 把上述等式代入定理4.3可推得结果.

参考文献
[1] Alomari M W, Darus M, Kirmaci U S. Some inequalities of Hermite-Hadamard type for s-convex functions. Acta Math Sci, 2011, 31(4): 1643-1652
[2] Bai R F, Qi F, Xi B Y. Hermite-Hadamard type inequalities for the m- and (α,m)-logarithmically convex functions. Filomat, 2013, 27(1): 1-7
[3] Bai S P, Wang S H, Qi F. Some Hermite-Hadamard type inequalities for n-time differentiable (α,m)-convex functions. J Inequal Appl, 2012, 2012: 267, 11pages
[4] Chun L, Qi F. Integral inequalities of Hermite-Hadamard type for functions whose 3rd derivatives are s-convex. Appl Math, 2012, 3(11): 1680-1685
[5] Chun L, Qi F. Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex. J Inequal Appl, 2013, 2013: 451
[6] Dragomir S S, Agarwal R P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl Math Lett, 1998, 11(5): 91-95
[7] Dragomir S S, Agarwal R P, Cerone P. On Simpson's inequality and applications. J Inequal Appl, 2000, 5(6): 533-579
[8] Hudzik H, Maligranda L. Some remarks on s-convex functions. Aequationes Math, 1994, 48: 100-111
[9] Jiang W D, Niu D W, Hua Y, Qi F. Generalizations of Hermite-Hadamard inequality to n-time differentiable functions which are s-convex in the second sense. Analysis (Munich), 2012, 32(3): 209-220
[10] Kirmaci U S. Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl Math Comput, 2004, 147(1): 137-146
[11] Pearce C E M, Pečarić J. Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl Math Lett, 2000, 13(2): 51-55
[12] Qi F, Wei Z L, Yang Q. Generalizations and refinements of Hermite-Hadamard's inequality. Rocky Mountain J Math, 2005, 35(1): 235-251
[13] Sarikaya M Z, Aktan N. On the generalization of some integral inequalities and their applications. Math Comput Model, 2011, 54: 2175-2182
[14] Sarikaya M Z, Set E, Özdemir M E. On new inequalities of Simpson's type for convex functions. Comput Math Appl, 2010, 60(8): 2191-2199
[15] Shuang Y, Yin H P, Qi F. Hermite-Hadamard type integral inequalities for geometric-arithmetically s-convex functions. Analysis (Munich), 2013, 33(2):197-208
[16] Wang S H, Xi B Y, Qi F. On Hermite-Hadamard type inequalities for (α,m)-convex functions. Int J Open Probl Comput Sci Math, 2012, 5(4): 47-56
[17] Wang S H, Xi B Y, Qi F. Some new inequalities of Hermite-Hadamard type for n-time differentiable functions which are m-convex. Analysis (Munich), 2012, 32(3): 247-262
[18] Xi B Y, Bai R F, Qi F. Hermite-Hadamard type inequalities for the m- and (α,m)-geometrically convex functions. Aequationes Math, 2012, 84(3): 261-269
[19] Xi B Y, Qi F. Hermite-Hadamard type inequalities for functions whose derivatives are of convexities. Nonlinear Funct Anal Appl, 2013, 18(2): 163-176
[20] Xi B Y, Qi F. Some Hermite-Hadamard type inequalities for differentiable convex functions and applications. Hacet J Math Stat, 2013, 42(3): 243-257
[21] Xi B Y, Qi F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J Funct Spaces Appl, 2012, Article ID 980438: 14pages
[22] Xi B Y, Qi F. Some inequalities of Hermite-Hadamard type for h-convex functions. Adv Inequal Appl, 2013, 2(1): 1-15
[23] Xi B Y, Qi F. Hermite-Hadamard type inequalities for geometrically r-convex functions. Studia Scientiarum Mathematicarum Hungarica, 2014, 51(4): 530-546
[24] Xi B Y, Wang S H, Qi F. Some inequalities of Hermite-Hadamard type for functions whose 3rd derivatives are P-convex. Appl Math, 2012, 3(12): 1898-1902
[25] Xi B Y, Wang Y, Qi F. Some integral inequalities of Hermite-Hadamard type for extended (s,m)-convex functions. Transylv J Math Mech, 2013, 5(1): 69-84
[26] Xi B Y, Wang S H, Qi F. Some inequalities for (h,m)-convex functions. Journal of Inequalities and Applications, 2014, 2014: 100, 12pages
[27] Zhang T Y, Ji A P, Qi F. Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means. Matematiche (Catania), 2013, 68(1): 229-239