数学物理学报  2015, Vol. 35 Issue (2): 373-380   PDF (277 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
夏冬
夏铁成
李德生
分数阶超Yang族及其超哈密顿结构
夏冬1,2 , 夏铁成2 , 李德生1     
1. 沈阳师范大学数学与系统科学学院 沈阳 110034;
2. 上海大学数学系 上海 200444
摘要:通过应用分数阶超迹恒等式以及建立在李超代数上的广义零曲率方程, 得到分数阶超Yang族和它的分数阶超哈密顿结构. 应用该方法还可以得到其他分数阶超方程族.
关键词分数阶超迹恒等式     李超代数     分数阶超Yang族     分数阶超哈密顿结构    
Fractional Super-Yang Hierarchy and Its Super-Hamiltonian Structure
Xia Dong1,2 , Xia Tiecheng2 , Li Desheng1     
1. Department of Mathematics, Shenyang Normal University, Shenyang 110034;
2. Department of Mathematics, Shanghai University, Shanghai 200444
Abstract: Base on a fractional supertrace identity presented by Wang and Xia and the generalized zero curvature equation associated with Lie superalgebras, the fractional super-Yang hierarchy and its fractional super Hamiltonian structure are obtained. This method can be used other fractional super hierarchies.
Key words: Fractional supertrace identity     Lie superalgebras     The fractional super-Yang hierarchy     Fractional super Hamiltonian structure    
1 引言

非整数阶微积分理论的研究可以追溯到Leibniz,Liouville,Grunwald, Letnikov和Riemann. 在过去的几十年中,许多学者指出, 因为分数阶导数可以有效的描述物理中的非线性现象, 所以分数阶微积分在动力学理论[1, 2], 统计力学[3, 4]以及其他领域[5, 6, 7]中有广泛地应用.

在孤子理论中,寻找孤子方程新的可积系统是一个重要的课题. 屠格式[8]是获得可积哈密顿系统的 一个有效方法. 应用屠格式, 研究人员已经获得了大量的可积系统及其它们的哈密顿结构. 吴国成和张盛[9]提出了广义 屠格式, 可以构造分数阶可积孤子族的哈密顿结构. 岳超和夏铁成给出了分数阶二次型恒等式[10], 并得到分数阶AKNS族的一个可积耦合的哈密顿结构. 王惠等将超迹恒等式推广为分数阶的超级恒等式,本文中 我们基于李超代数, 应用分数阶超级恒等式构造出分数阶超Yang族以及它的分数阶超哈密顿结构.

2 分数阶超迹恒等式

首先,考虑一组分数阶矩阵等谱问题 \begin{equation} D_{x}^{\alpha}\psi=U\psi=U(u,\lambda)\psi,~~D_{t}^{\beta}\psi=V\psi,(2.1) \end{equation}, 其中 $D_{x}^{\alpha}$是修正导数或者经典分数阶导数意义上的分数阶导数, $\psi$ 是 $n$ 维函数向量. 利用相容条件(2.1),可以得到广义零曲率方程 \begin{equation} D_{t}^{\beta}U-D_{x}^{\alpha}V+[U,V]=0,(2.2) \end{equation} 其中,$[U,V]=UV-VU$,当 $\alpha=\beta=1$, (2.2)式可以化简为经典的零曲率方程.

现在,给定圈李超代数$G$,我们引进超迹,使其满足

(1)~ 对称性 \begin{equation} {\rm str}(ad_{a}ad_{b})={\rm str}(ad_{b}ad_{a}),~~~~~a,b\in G;(2.3) \end{equation}

(2)~ 李积不变性 \begin{equation} {\rm str}(ad_{a}ad_{[b,c]})={\rm str}(ad_{[a,b]}ad_{c}),~~~~~a,b,c\in G,(2.4) \end{equation} $ad_{a}$是$a\in G$在$G$上的伴随表示, 其定义为 \begin{equation} ad_{a}b=[a,b],~~~~~~b\in G,(2.5) \end{equation} 此处 $[\cdot,\cdot]$是$G$的李超括号.

定义泛函 \begin{equation} W=\int[{\rm str}(ad_{V}ad_{U_{\lambda}})+{\rm str}(ad_{\Lambda }ad_{D_{x}^{\alpha}-[U,V]})]{\rm d}x,(2.6) \end{equation} 其中,$U_{\lambda}=\frac{\partial U}{\partial \lambda}$,$U$, $V$满足(2.1)式,$\Lambda\in \tilde{G}$是待定乘子.

从分数导数的意义上,泛函$R$关于$a$的梯度$\nabla_{a}R\in G$定义为 \begin{equation} \int {\rm str}(ad_{\nabla_{a}R}ad_{b}){\rm d}x=\frac{\partial}{\partial \epsilon}R(a+\epsilon b)|_{\epsilon=0},~~~~~a,b\in G.(2.7) \end{equation} 显然,由Killing型的非退化性,可得 \begin{equation} \nabla_{b}\int {\rm str}(ad_{a}ad_{b}){\rm d}x=a,~~~\nabla_{b}\int {\rm str}(ad_{a}ad_{D_{x}^{\alpha}b}){\rm d}x=-D_{x}^{\alpha}a.(2.8) \end{equation} 所以,我们有关于泛函$W$的变分运算的约束条件,如下 \begin{equation} \nabla_{V}W=U_{\lambda}-D_{x}^{\alpha}\Lambda+[U,\Lambda],(2.9) \end{equation} \begin{equation} \nabla_{\Lambda}W=D_{x}^{\alpha}V-[U,V],(2.10) \end{equation} 方程(2.9),(2.10)决定$V$和$\Lambda$,这意味着$V$和 $\Lambda$与$U$都与势函数$u$有关. 而且满足 \begin{equation} \frac{\delta}{\delta u}\int {\rm str}(ad_{V}ad_{U_{\lambda}}){\rm d}x=\frac{\delta W}{\delta u},(2.11) \end{equation} 其中,$\frac{\delta}{\delta u}$是关于$u$的变分导数. 显然, 计算$\frac{\delta W}{\delta u}$仅需考虑独立变量$u$, 而且如果$\nabla_{a}R(a)=0$,则 $$ \Big(\frac{\delta}{\delta u}\Big)R(a(u))=0. $$ 因此由(2.4)式不变性,我们有 \begin{equation} \frac{\delta}{\delta u}\int {\rm str}(ad_{V}ad_{U_{\lambda}}){\rm d}x=\frac{\delta W}{\delta u}={\rm str}(ad_{V}ad_{\frac{\partial u_{\lambda}}{\partial u}})+{\rm str}(ad_{[\Lambda,V]}ad_{\frac{\partial U}{\partial u}}).(2.12) \end{equation} 利用方程(2.9),(2.10)和 Jacobi恒等式,可得 \begin{eqnarray} D_{x}^{\alpha}[\Lambda,V] &=&[D_{x}^{\alpha}\Lambda,V]+[\Lambda,D_{x}^{\alpha}V]=[U_{\lambda}+[U,\Lambda],V]+[\Lambda,[U,V]] \nonumber\\ &=&[U_{\lambda},V]+[V,[\Lambda,U]]+[\Lambda,[U,V]]=[U_{\lambda},V]+[U,[\Lambda,V]],(2.13) \end{eqnarray} 同时,从(2.10)式有, \begin{equation} D_{x}^{\alpha}V=[U_{\lambda},V]+[U,V_{\lambda}].(2.14) \end{equation} 因此,$Z=[\Lambda,V]-V_{\lambda}$满足 \begin{equation} D_{x}^{\alpha}Z=[U,Z].(2.15) \end{equation} 根据唯一性以及${\rm rank}(Z)={\rm rank}(V_{\lambda})={\rm rank}(\frac{V}{\lambda})$, 则存在一个常数$\gamma$满足 \begin{equation} [\Lambda,V]-V_{\lambda}=\frac{\gamma}{\lambda}V, (2.16) \end{equation} 因为$\frac{V}{\lambda}$是$D_{x}^{\alpha}=[U,V]$的根. 最后,(2.12)式可以表示为 \begin{eqnarray} \frac{\delta}{\delta u}\int {\rm str}(ad_{V}ad_{U_{\lambda}}){\rm d}x &=&{\rm str}(ad_{V}ad_{\partial U_{\lambda}/\partial u})+{\rm str}(ad_{V_{\lambda}}ad_{\partial U/\partial u}) +\frac{\gamma}{\lambda}{\rm str}(ad_{V}ad_{\partial U/\partial u})\nonumber\\ &=&\frac{\partial}{\partial \lambda}{\rm str}(ad_{V}ad_{\partial U/\partial u}) +(\lambda^{-\gamma}\frac{\partial}{\partial \lambda}\lambda^{\gamma})({\rm str}(ad_{V}ad_{\partial U/\partial u})) \nonumber\\ &=&\lambda^{-\gamma}\frac{\partial}{\partial \lambda}\lambda^{\gamma}({\rm str}(ad_{V}ad_{\partial U/\partial u})).(2.17) \end{eqnarray} 这样我们得到了李超代数上的分数阶的超迹恒等式[11].

定理2.1[11]} 设$U=U(u,\lambda)\in G$是齐次秩的$n$阶矩阵, 且定态零曲率方程$D_{x}^{\alpha}=[U,V]$除常数因子外有唯一解$V\in G$, 则有如下分数阶超迹恒等式 \begin{equation} \frac{\delta}{\delta u}\int {\rm str}(ad_{V}ad_{U_{\lambda}}){\rm d}x=\lambda^{-\gamma}\frac{\partial}{\partial \lambda}\lambda^{\gamma}({\rm str}(ad_{V}ad_{\partial U/\partial u})),~~~~\gamma = \mbox{常数.}(2.18) \end{equation} (2.18)式中的变分导数是修正Riemman-Liouville意义下的分数阶导数.

定理2.[11]} 设$V$是定态零曲率方程$D_{x}^{\alpha}=[U,V]$的解,则分数阶超级恒等式中的常数$\gamma$由下列式子给出 \begin{equation} \gamma=-\frac{\lambda}{2}\frac{\rm d}{{\rm d}\lambda}\ln|{\rm str}(ad_{V}ad_{V})|,~~~{\rm str}(ad_{V}ad_{V})\neq0.(2.19) \end{equation}

3 分数阶超Yang族

我们考虑下面的李超代数 $G_{2}= \Big\{\sum\limits_{i=1}^{5}\lambda_{i}e_{i}\mid i=1,2,3,4,5\Big\}$ (参见文献[12]). $$e_{1}=\left(\begin{array}{ccc}0&1&0\\1&~~0~~&0\\0&0&0\\ \end{array}\right),\quad e_{2}=\left(\begin{array}{ccc}0&~~1~~&0\\-1&0&0\\0&0&0\\ \end{array}\right),\quad e_{3}=\left(\begin{array}{ccc}1&~~0~~&0\\0&-1&0\\0&0&0\\ \end{array}\right),$$ $$e_{4}=\left(\begin{array}{ccc}0&~~0~~&1\\0&0&0\\0&-1&0\\ \end{array}\right),\quad e_{5}=\left(\begin{array}{ccc}0&~~0~~&0\\0&0&1\\1&0&0\\ \end{array}\right).$$ 满足 $$ [e_{1},e_{2}]=-2e_{3},[e_{1},e_{3}]=-2e_{2},[e_{2},e_{3}]=-2e_{1},[e_{1},e_{4}]=[e_{5},e_{3}]=[e_{4},e_{2}]=e_{5}, $$ $$ [e_{1},e_{5}]=[e_{2},e_{5}]=[e_{3},e_{4}]=e_{4},[e_{4},e_{4}]_{+}=-(e_{1}+e_{2}),[e_{5},e_{5}]_{+}=e_{1}-e_{2}, $$ $$ [e_{4},e_{5}]_{+}=[e_{5},e_{4}]_{+}=e_{3}, $$ 其中,$e_{1},e_{2},e_{3}$是偶元,$e_{4},e_{5}$是奇元, $[\cdot,\cdot]$和$[\cdot,\cdot]_{+}$表示交换子和反交换子. 对应的圈李超代数 $\tilde{G_{2}}$定义为 $$e_{i}(n)=\lambda^{n}e_{i},~~ [e_{i}(m),e_{j}(n)]=[e_{i},e_{j}]\lambda^{m+n}, ~~ i,j=1,2,3,4,5,~ m,n\in {\bf Z}. $$

我们考虑分数阶超Yang等谱问题 $$D_{x}^{\alpha}\psi=U\psi,$$ \begin{equation} U=\left(\begin{array}{ccc}s&~~\lambda+q+r~~&u_{1}\\-\lambda-q+r&-s&u_{2}\\u_{2}&-u_{1}&0\\ \end{array}\right),\quad u=\left(\begin{array}{c}q\\r\\s\\u_{1}\\u_{2}\\ \end{array}\right),\quad \lambda_{t}=0.(3.1) \end{equation}

设$V=ae_{3}+be_{2}+ce_{1}+de_{4}+fe_{5}$. 则解定态零曲率方程$D_{x}^{\alpha}V=[U,V]$可得 $$ D_{x}^{\alpha}a_{m}=2c_{m+1}+2qc_{m}-2rb_{m}+u_{1}f_{m}+u_{2}d_{m}, $$ $$ D_{x}^{\alpha}b_{m}=-2ra_{m}+2sc_{m}-u_{1}d_{m}-u_{2}f_{m}, $$ $$ D_{x}^{\alpha}c_{m}=-2a_{m+1}-2qa_{m}+2sb_{m}-u_{1}d_{m}+u_{2}f_{m}, $$ $$ D_{x}^{\alpha}d_{m}=f_{m+1}+qf_{m}+rf_{m}+sd_{m}-u_{1}a_{m}-u_{2}b_{m}-u_{2}c_{m}, $$ $$ D_{x}^{\alpha}f_{m}=-d_{m+1}-qd_{m}+rd_{m}-sf_{m}+u_{2}a_{m}+u_{1}b_{m}-u_{1}c_{m}, $$ $$ a_{0}=c_{0}=d_{0}=e_{0}=0,b_{0}=1,a_{1}=s,c_{1}=r,d_{1}=u_{1},e_{1}=u_{2},b_{1}=0. $$

记 \begin{eqnarray*} V_{+}^{(n)} &=&\sum_{m=0}^{m}[a_{m}e_{3}(n-m)+b_{m}e_{2}(n-m) +c_{m}e_{1}(n-m)+d_{m}e_{4}(n-m)+f_{m}e_{5}(n-m)] \\ &=&\lambda^{n}V-V_{-}^{(n)}, \end{eqnarray*} 通过计算,我们有如下的结果 $$-D_{x}^{\alpha}V_{+}^{(n)}+[U,V_{+}^{(n)}]=-2c_{n+1}e_{3}(0)+2a_{n+1}e_{1}(0)-f_{n+1}e_{4}(0)+d_{n+1}e_{5}(0).$$ 取$V^{(n)}=V_{+}^{(n)}+b_{n+1}e_{2}(0)$,则有 \begin{eqnarray} -D_{x}^{\alpha}V^{(n)}+[U,V^{(n)}]&=&(-2c_{n+1}-2rb_{n+1})e_{3}(0)+(2a_{n+1}+2sb_{n+1})e_{1}(0)-b_{n+1x}e_{2}(0) \nonumber\\ &&+(-f_{n+1}-u_{2}b_{n+1})e_{4}(0)+(d_{n+1}+u_{1}b_{n+1})e_{5}(0), (3.2) \end{eqnarray} 因此由分数阶零曲率方程 \begin{equation} D_{t}^{\beta}-D_{x}^{\alpha}V^{(n)}+[U,V^{(n)}]=0 , (3.3) \end{equation} 决定了如下分数阶方程族 \begin{eqnarray} D_{t}^{\beta}u&=&\left(\begin{array}{c}D_{t}^{\beta}q\\D_{t}^{\beta}r\\D_{t}^{\beta}s\\D_{t}^{\beta}u_{1}\\D_{t}^{\beta}u_{2}\\\end{array}\right) =\left(\begin{array}{c}D_{x}^{\alpha}b_{n+1}\\-2a_{n+1}-2sb_{n+1}\\2c_{n+1}+2rb_{n+1}\\f_{n+1}+u_{2}b_{n+1}\\-d_{n+1}-u_{1}b_{n+1}\\\end{array}\right) \nonumber\\ &=&\left(\begin{array}{ccccc}-D_{x}^{\alpha}& ~~-s~~&r&~~ -\frac{1}{2}u_{2}~~& \frac{1}{2}u_{1}\\[2mm] s&0&-1&0&0\\-r&1&0&0&0\\[2mm] -\frac{1}{2}u_{2}&0&0& -\frac{1}{2}&0\\[3mm] \frac{1}{2}u_{1}&0&0&0& -\frac{1}{2}\end{array}\right)\left(\begin{array}{c}-2b_{n+1}\\2c_{n+1}\\2a_{n+1}\\-2f_{n+1}\\2d_{n+1}\\\end{array}\right) \nonumber\\ &=&JP_{n+1}=JLP_{n},(3.4) \end{eqnarray} 其中 $$L=\left(\begin{array}{ccccc}A&B&C&D&E\\[2mm] -r&-q& \frac{1}{2}D_{x}^{\alpha}& \frac{1}{2}u_{1}& -\frac{1}{2}u_{2}\\[3mm] -s&~~ -\frac{1}{2}D_{x}^{\alpha}~~&-q& -\frac{1}{2}u_{2}& -\frac{1}{2}u_{1}\\[2mm] u_{2}&-u_{2}&-u_{1}&~~-(q+r)~~&-D_{x}^{\alpha}+s\\ -u_{1}&-u_{1}&u_{2}&D_{x}^{\alpha}+s&-q+r \end{array}\right),$$ $A=-D_{x}^{-\alpha}(u_{1}^{2}+u_{2}^{2})$, $B=D_{x}^{-\alpha}(2qs-u_{1}^{2}+u_{2}^{2})-D_{x}^{-\alpha}rD_{x}^{\alpha}$, $C=2D_{x}^{-\alpha}(u_{1}u_{2}-qr)-D_{x}^{-\alpha}sD_{x}^{\alpha}$, $D=D_{x}^{-\alpha}u_{1}D_{x}^{\alpha}+D_{x}^{-\alpha}qu_{2}$, $E=D_{x}^{-\alpha}u_{2}D_{x}^{\alpha}-D_{x}^{-\alpha}qu_{1}$. 如果在系统(3.4)式中 取$u_{1}=u_{2}=0$, 则化简为参考文献[13]中的超Yang族, 所以称系统(3.4)式为分数阶超Yang族.

4 分数阶超Yang族的分数阶超哈密顿结构

下面将应用分数阶超级恒等式构造分数阶超Yang族的哈密顿结构. 对于$\forall a=a_{1}e_{1}+a_{2}e_{2}+a_{3}e_{3}+a_{4}e_{4}+a_{5}e_{5}\in G$, 通过计算即有 $$ad_{a}=\left(\begin{array}{ccccc}0&~~-a_{3}~~&a_{2}&a_{5}&a_{4}\\ -2a_{2}&2a_{1}&0&~~-2a_{4}~~&0\\2a_{3}&0&-2a_{1}&0&2a_{5}\\-a_{4}&-a_{5}&0&a_{1}&a_{2}\\a_{5}&0&-a_{4}&a_{3}&-a_{1}\\\end{array}\right), $$ 这里的$ad_{a}$是由(2.5)式决定的. 如果定义超迹 \begin{equation} {\rm str}(c)=c_{11}+c_{22}-c_{33},~~~~c=ab,~~~~~a,b\in G,(4.1) \end{equation} 其中$c=(c_{ij})_{3\times3}$且$ab$是 $a$和$b$的矩阵积, 则Killing型可按如下公式计算 \begin{equation} {\rm str}(ad_{a}ad_{b})=3{\rm str}(ab),~~~~~a,b\in G.(4.2) \end{equation} 利用(4.2)式可推得 $$ {\rm str}(ad_{V}ad_{u_{\lambda}})=-6b,{\rm str}(ad_{V}ad_{u_{q}})=-6b,{\rm str}(ad_{V}ad_{u_{r}})=6c, $$ $$ {\rm str}(ad_{V}ad_{u_{s}})=6a,{\rm str}(ad_{V}ad_{u_{u_{1}}})=-6e,{\rm str}(ad_{V}ad_{u_{u_{2}}})=6d, $$ 利用分数阶超级恒等式(2.18),即得 \begin{equation} \frac{\delta}{\delta u}\int(-6b){\rm d}x=\lambda^{-\gamma}\frac{\partial}{\partial \lambda}\lambda^{\gamma}\left(\begin{array}{c}-6b\\6c\\6a\\-6e\\6d\\ \end{array}\right).(4.3) \end{equation} 比较$\lambda^{-n-1}$的系数,等式满足 \begin{equation} \frac{\delta}{\delta u}\int(-6b_{n+1}){\rm d}x=(-n+\gamma)\left(\begin{array}{c}-6b_{n}\\6c_{n}\\6a_{n}\\-6e_{n}\\6d_{n}\\ \end{array}\right),~~~n\geq0.(4.4) \end{equation} 为了确定$\gamma$,我们首先设$n=0$,由此可得$\gamma=0$. 所以,我们有 \begin{equation} \frac{\delta}{\delta u}\int\Big(\frac{6b_{n+2}}{n+1}\Big){\rm d}x=\left(\begin{array}{c}-6b_{n+1}\\6c_{n+1}\\6a_{n+1}\\-6e_{n+1}\\6d_{n+1}\\ \end{array}\right),~~~n\geq0.(4.5) \end{equation} 因此,分数阶超Yang族具有如下超哈密顿结构 \begin{equation} D_{t}^{\beta}u=J\frac{\delta H_{n}}{\delta u},~~~~n\geq0,(4.6) \end{equation} 其中分数阶超哈密顿算子$J$和哈密顿函数$H_{n}$分别为 \begin{equation} J=\left(\begin{array}{ccccc}-D_{x}^{\alpha}&~~-s~~&r& ~~ -\frac{1}{2}u_{2}~~& \frac{1}{2}u_{1}\\[2mm] s&0&-1&0&0\\ -r&1&0&0&0\\[2mm] -\frac{1}{2}u_{2}&0&0& -\frac{1}{2}&0\\[3mm] \frac{1}{2}u_{1}&0&0&0& -\frac{1}{2}\end{array}\right) ,~~~~H_{n}=\int\frac{6b_{n+2}}{n+1},~~~~~n\geq0.(4.7) \end{equation} 显然,该分数阶超Yang族具有超双哈密顿结构 \begin{equation} D_{t}^{\beta}u=J\frac{\delta H_{n}}{\delta u}=M\frac{\delta H_{n-1}}{\delta u},~~~~n\geq0,(4.8) \end{equation} 其中,$M=LJ$[12]. 当$n=1$,我们可得到分数阶非线性超Yang系统 $$D_{t}^{\beta}q=rD_{x}^{\alpha}r+sD_{x}^{\alpha}s+D_{x}^{\alpha}(u_{1}u_{2}),$$ $$D_{t}^{\beta}r=D_{x}^{\alpha}r+2qs-sr^{2}-s^{3}-2su_{1}u_{2},$$ $$D_{t}^{\beta}s=D_{x}^{\alpha}s-2qr+r^{3}+rs^{2}+2ru_{1}u_{2}$$ $$D_{t}^{\beta}u_{1}=D_{x}^{\alpha}u_{1}-qu_{2}+\frac{1}{2}u_{2}r^{2}+\frac{1}{2}u_{2}s^{2},$$ \begin{equation}D_{t}^{\beta}u_{2}=D_{x}^{\alpha}u_{2}+qu_{1}-\frac{1}{2}u_{1}r^{2}-\frac{1}{2}u_{1}s^{2}.(4.9) \end{equation}

显然,当$\alpha=\beta=1$,系统(4.9)式化简为经典非线性超Yang系统 $$q_{t}=rr_{x}+ss_{x}+u_{1x}u_{2}+u_{1}u_{2x},$$ $$r_{t}=r_{x}+2qs-sr^{2}-s^{3}-2su_{1}u_{2},$$ $$s_{t}=s_{x}-2qr+r^{3}+rs^{2}+2ru_{1}u_{2},$$ $$u_{1t}=u_{1x}-qu_{2}+\frac{1}{2}u_{2}r^{2}+\frac{1}{2}u_{2}s^{2},$$ \begin{equation}u_{2t}=u_{2x}+qu_{1}-\frac{1}{2}u_{1}r^{2}-\frac{1}{2}u_{1}s^{2}.(4.10) \end{equation}

5 结论

本文不但从等谱问题(3.1)获得分数阶超Yang族, 而且应用分数阶超迹恒等式构造了分数阶超 Yang族的分数阶超哈密顿结构. 这种构造分数阶孤子方程族的方法可以被推广到其他方程族上.

参考文献
[1] Zaslavsky G M. Chaos, fractional kinetics and anomalous transport. Phys Rep, 2002, 371(6): 461-580
[2] Tarasov V E. Zaslavsky G M. Dynamics with low-level fractionality. Physica A, 2006, 368(2): 399-415
[3] Riewe F. Mechanics with fractional derivatives. Phys Rev E, 1997, 55(3): 3581-3592
[4] Tarasov V E. Fractional systems and fractional Bogoliubov hierarchy equations. Phys Rev E, 2005, 71(1): 011102
[5] Tarasov V E. Fractional Liouville and BBGKI equations. J Phys Conf Ser, 2005, 7: 17-33
[6] Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput Math Appl, 2006, 51(9/10): 1367-1376
[7] Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl Math Lett, 2009, 22(3): 378-385
[8] Tu G Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys, 1989, 30(2): 330-338
[9] Wu G C, Zhang S. A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy. Phys Lett A, 2011, 375(42): 3659-3663
[10] Yue C, Xia T C. The fractional quadratic-form identity and Hamiltonian structure of an integrable coupling of the fractional Ablowitz-Kaup-Segur hierarchy. J Math Phys, 2013, 54(7): 073518
[11] Wang H, Xia T C. The fractional supertrace identity and its application to the super Ablowitz-Kaup-Segur hierarchy. J Math Phys, 2013, 54(4): 043505
[12] Ma W X, He J S, Qin Z Y. Supertrace identity and its application to superintegrable systems. J Math Phys, 2008, 49(3): 033511, 13 pages
[13] Tao S X, Xia T C. Two super-integrable hierarchy and their super-Hamiltonian structures. Commun Nonlinear Sci Numer Simulat, 2011, 16(1): 127-132