数学物理学报  2015, Vol. 35 Issue (2): 332-344   PDF (358 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
王继霞
肖庆宪
非时齐扩散模型中扩散系数的局部估计
王继霞1, 肖庆宪2    
1. 河南师范大学数学与信息科学学院 河南新乡 453007;
2. 上海理工大学 管理学院 上海 200093
摘要:基于非时齐扩散模型的离散观测样本, 利用局部近似的方法, 构造了扩散系数的局部估计量, 并证明了估计量的强相合性和渐近正态性.
关键词非时齐扩散模型     扩散系数     局部估计     强相合性     渐近正态性    
Local Estimation of the Diffusion Coefficient for Time-Inhomogeneous Diffusion Models
Wang Jixia1, Xiao Qingxian2    
1. College of Mathematics and Information Science, Henan Normal University, Henan Xinxiang 453007;
2. Business School, University of Shanghai for Science and Technology, Shanghai 200093
Abstract: Based on discretely observed sample of the time-inhomogeneous diffusion models, the local estimation of the diffusion coefficient is proposed by using local approximate method. Furthermore, we verify the strong consistency and asymptotic normality of the local estimation proposed.
Key words: Time-inhomogeneous diffusion model     Diffusion coefficient     Local estimation     Strong consistency     Asymptotic normality    
1 引言与预备知识

扩散模型在金融,工程和军事等领域有着广泛的应用. 近年来, 扩散过程的统计推断已成为概率与统计学家关注的热点问题,其中, 非时齐扩散模型统计推断的研究越来越受到关注. 比如,在金融领域中, 经济条件随时间变动已是基本的事实, 因此有必要设想金融资产的瞬时期望收益和瞬时波动率不但与指 定的状态变量有关,而且也应该依赖于时间. 这意味着基础状态变量应 该是一个非时齐的扩散过程. 对于非时齐扩散模型的研究, 迄今已做了大量的工作. 例如文献 Ho和Lee[1], Hull和White[2],Black和Karasinski[3]和Fan 等[4,5] 等考虑了时变参数的连续扩散模型. 以上文献主要研究的是非时齐扩散模型的参数估计问题. 对于非时齐扩散模型的非参数估计问题, 陈萍等[6]和马雷等[7] 分别考虑了时变扩散系数的小 波估计和核估计,他们都证明了估计量的强收敛性.

本文研究如下非时齐扩散模型中时变扩散系数的局部非参数估计问题. 考虑定义在概率空间$(\Omega,F,P)$上的随机过程 $\{X_t,0\leq t\leq T\}$,满足如下的非齐次扩散模型 $${\rm d}X_t=\mu(t,X_t){\rm d}t+\sigma(t,X_t){\rm d}B_t,\ \ X_0=x_0 (1.1)$$ 其中$\{B_t,0\leq t\leq T\}$是标准布朗运动, 二元函数$\mu(t,X_t)$和$\sigma(t,X_t)$分别称为随机过程$X_t$ 的漂移系数和扩散系数,初值$x_0\in L^2$,且与$\{B_t,0\leq t\leq T\}$ 独立. 令$F_t$ 为$\{X_s,0\leq s\leq t\}$生成的$\sigma$ -代数, 本文中,$C_i,i=1,2,3$皆为不依赖与任何变量的常数. 本文将基于非时齐扩散模型的离散观测样本,利用局部近似的方法, 构造扩散系数的局部估计量,并证明估计量的强相合性和渐近正态性. 下面给出模型(1.1)需要满足的假设条件.

(A1) (线性增长条件)~ 函数$\mu$和$\sigma$是可测函数,且满足 $$|\mu(t,x)|+|\sigma(t,x)|\leq C_1(1+|x|),x\in R,t\in [0,T].$$

(A2) (Lipschitz条件)~ $$|\mu(t,x)-\mu(t,y)|+|\sigma(t,x)-\sigma(t,y)|\leq C_2|x-y|,x,y\in R,t\in [0,T].$$

(A3)~ $|\sigma(t_1,x)-\sigma(t_2,x)|\leq C_3|t_1-t_2|,$且$\sigma(t,x)>0,x\in R,t_1,t_2,t\in [0,T]$.

假设条件(A1)和(A2)保证了扩散模型(1.1)有唯一的强解, 条件(A3)保证了我们可以对$\sigma(t,x)$关于$t$进行局部近似.

为便于讨论估计量的渐近性质,给出如下预备知识.

定义1.1若一个连续随机过程$X_t$可以分解为 $$X_t=LX_t+A_t, $$ 其中$LX_t$是一个连续局部鞅, $A_t$是具有有限方差的连续适应过程,则称$X_t$是一个连续半鞅.

定义1.2若$X_t$是一个连续半鞅, 则存在一个关于$t$非减的随机过程$L_X(t,a)$,使得 $$L_X(t,a)=\lim_{\epsilon\rightarrow 0}\frac{1}{\epsilon}\int_0^tI_{[a,a+\epsilon]}(X_s){\rm d}[X]_s$$ 几乎处处成立,并称$L_X(t,a)$为$X_t$在$a$点处的局部时, 其中$[X]_t$表示$X_t$的二次互偏差过程,$I_A$表示集合$A$的示性函数.

局部时$L_X(t,a)$是一个表示过程$X_t$在点$a$的邻域内发生的次数的量. 若扩散过程$X_t$有极小的二阶矩$\sigma^2(X_t)$, 则其在点$a$处的局部时可以表示为 $$L_X(t,a)=\lim_{\epsilon\rightarrow 0}\frac{1}{\epsilon}\int_0^tI_{[a,a+\epsilon]}(X_s)\sigma^2(X_s){\rm d}s.$$

引理1.1令$X_t$是一个连续半鞅, 且有二次互偏差过程$[X]_t$,若$f$是一个正的二元波雷尔可测函数,则有 $$\int_0^tf(X_s,s){\rm d}[X]_s=\int_{-\infty}^{+\infty}{\rm d}a\int_0^tf(a,s){\rm d}L_X(s,a),$$ 特别地,若$f$是一个正的一元波雷尔可测函数,则上式可以为 $$\int_0^tf(X_s){\rm d}[X]_s=\int_{-\infty}^{+\infty}f(a)L_X(t,a){\rm d}a.$$

引理1.2若$X_t$满足假设条件(A1)--(A3), $r$和$a$是任意固定的实数,则当$\lambda\rightarrow\infty$时,有 $$\frac{1}{2}\sqrt{\lambda}\left\{L_X(t,r+\frac{a}{\lambda})-L_X(t,r)\right\}\rightarrow_d \left \{ \begin{array} {ll} W(L_X(t,r),a),& a>0 ,\\ W(L_X(t,r),-a),& a<0, \end{array} \right .$$ 其中符号$``\rightarrow_d"$表示``依分布收敛", $W(t,a)$是标准Brownian Sheet,且与$X_t$独立.

引理1.3设$\{X_t,0\leq t\leq T\}$是满足假设条件(A1)--(A3)随机过程,令$s({\rm d}x)=\frac{2{\rm d}x}{S'(x)\sigma^2(x)}$是过程$X_t$的速率测度,这里$S'(x)$是尺度函数的一阶导数,$\sigma^2(x)$ 是波动率函数. $f(\cdot)$ 和 $g(\cdot)$是关于速率测度$s({\rm d}x)$可积的任意两个波雷尔可测函数,则有 $$P\left\{\lim_{T\rightarrow\infty}\frac{\int_{0}^Tf(X_s){\rm d}s}{\int_{0}^Tg(X_s){\rm d}s}=\frac{\int_{-\infty}^{+\infty}f(x)s({\rm d}x)} {\int_{-\infty}^{+\infty}g(x)s({\rm d}x)}\right\}=1.$$

引理1.1的证明参见文献[8]的第6章的 推论1.6和练习题1.15,引理1.2和引理1.3的证明分别参见文献[9]中的引理5和引理6.

2 扩散系数的局部估计

令$\{X_{t_i},i=0,1,2,\cdots,n\}$是扩散模型(1.1)的等距离散观测样本, 其中$t_i=iT/n$,$i=0,1,2,\cdots,n$. 记$\Lambda_n=T/n$, 则$t_i=i\Lambda_n,i=0,1,2,\cdots,n$. 下面我们基于该离散观测样本来构造扩散系数$\sigma^2(t,x)$的局部估计量, 并讨论该估计量的渐近性质.

由假设条件(A3)知,我们可以对$\sigma(t,x)$关于$t$进行局部近似, 即对于任意给定的时间点$t^*$,取$\gamma_n>0$, 使得当$n\rightarrow\infty$时,$\gamma_n\rightarrow 0$ 且$n\gamma_n\rightarrow\infty$, 当$t\in[t^*-\gamma_n,t^*+\gamma_n]$时,令 $$\sigma^2(t,x)=\sigma^2(t^*,x),(2.1)$$ 即在$t^*$的$\gamma_n$邻域内,扩散系数$\sigma^2(t,x)$仅是$x$的函数, 而与$t$无关.

对于观测样本$\{X_{t_i},i=0,1,2,\cdots,n\}$,令 $$i_0^{(t^*)}=\inf\left\{i:t_i\in[t^*-\gamma_n,t^*+\gamma_n]\right\},\,\,i_1^{(t^*)}=\sup\left\{i:t_i\in[t^*-\gamma_n,t^*+\gamma_n]\right\}.$$ 令 $$n_{\gamma_n}=\left[\big(i_1^{(t^*)}-i_0^{(t^*)}\big)/ \Lambda_n\right], $$ 其中$[x]$表示不大于数$x$的最大整数. 记 $$t_i^{(\gamma_n)}=t_{i_0^{(t^*)}}+i\Lambda_n,~~i=0,1,2, \cdots,n_{\gamma_n}, $$ 这样就得到了时间区间$[t^*-\gamma_n,t^*+ \gamma_n]$上的观测值. 选取适当的$\varepsilon_{\gamma_n}>0$, 对每个观测值$X_{t_i^{(\gamma_n)}}$定义停时序列如下 $$\tau_{i,0}^{(\gamma_n)}=\inf\left\{t_l\geq0:\left|X_{t_l}-X_{t_i^{(\gamma_n)}}\right|\leq\varepsilon_{\gamma_n}, l\in\left[i_0^{(t^*)},i_1^{(t^*)}\right]\right\}, $$ $$ \tau_{i,j+1}^{(\gamma_n)}=\inf\left\{t_l\geq\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}: \left|X_{t_l}-X_{t_i^{(\gamma_n)}}\right|\leq\varepsilon_{\gamma_n}, l\in\left[i_0^{(t^*)},i_1^{(t^*)}\right]\right\},$$ $$j=0,1,2,\cdots,m_{\gamma_n}(t_i^{(\gamma_n)}), \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ 其中$\Delta_{\gamma_n}=(2\gamma_n)/n_{\gamma_n}$, $m_{\gamma_n}(t_i^{(\gamma_n)}) =\sum\limits_{l=1}^{n_{\gamma_n}}I_{\{|X_{t_l}-X_{t_i^{(\gamma_n)}}|\leq\varepsilon_{\gamma_n}\}}$表示落在$X_{t_i^{(\gamma_n)}}$的$\varepsilon_{\gamma_n}$邻域内的观测值的个数. 对每一个$i=0,1,2,\cdots,n_{\gamma_n}$,令 $$ \tilde{\sigma}^2(t^*,X_{t_i^{(\gamma_n)}})=\frac{1}{m_{\gamma_n}(t_i^{(\gamma_n)})\Delta_{\gamma_n}} \sum\limits_{j=0}^{m_{\gamma_n}(t_i^{(\gamma_n)})-1}\left[X_{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}-X_{\tau_{i,j}^{(\gamma_n)}}\right]^2. (2.2) $$ 基于式(2.2)构造扩散系数的局部估计量为: 对任意给定的时间的$t^*$,令 $$ \hat{\sigma}^2(t^*,x)=\frac{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)\tilde{\sigma}^2(t^*,X_{t_i^{(\gamma_n)}})} {\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}, (2.3) $$ 其中$K_h(\cdot)=K(\cdot/h)/h$, $K(\cdot)$是一个非负的权重函数,称其为核函数. 假设核函数$K(\cdot)$满足如下条件

(1)~ $K(\cdot)$是一个连续可微的对称函数,且其导函数$K'(\cdot)$绝对可积.

(2)~ $\int_{-\infty}^{+\infty}K(x){\rm d}x=1,\int_{-\infty}^{+\infty} K^2(x){\rm d}x<\infty,\int_{-\infty}^{+\infty}x^2K(x){\rm d}x <\infty$和$\sup\limits_{x\in R}K(x)<C$,其中$C$是一个正的常数.

下面的定理2.1和定理2.2分别给出了局部估计量(2.3) 式的强相合性和渐近正态性.

定理2.1假设条件(A1)--(A3)成立, 如果有:$h_{\gamma_n}\rightarrow0$,使得 $$\frac{1}{h_{\gamma_n}}\left[\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right]^{1/2}\rightarrow0,$$ 且$\gamma_n\rightarrow0$,使得 $$\frac{\gamma_n^{1/2}}{n_{\gamma_n}}\left[\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right]^{1/2}\rightarrow0,$$ 则对任意给定的时间点$t^*$,有 $$\hat{\sigma}^2(t^*,x)\rightarrow_{\rm a.s.} \sigma^2(t^*,x),$$ 其中符号$``\rightarrow_{\rm a.s.}"$表示``依概率1收敛"或``几乎处处收敛".

定理2.2假设条件(A1)--(A3)成立, 如果有$h_{\gamma_n}=o(\varepsilon_{\gamma_n})$且$n_{\gamma_n}\varepsilon_{\gamma_n}^4\rightarrow 0$,则对任意给定的时间点$t^*$,有 $$\bar{L}_X(2\gamma_n,x)\sqrt{n_{\gamma_n}\varepsilon_{\gamma_n}}/(2\gamma_n)\left\{\hat{\sigma}^2(t^*,x)-\sigma^2(t^*,x)\right\} \rightarrow_dN\left(0,2\sigma^4(t^*,x)\right),$$ 如果有$h_{\gamma_n}=o(\varepsilon_{\gamma_n})$且$n_{\gamma_n}\varepsilon_{\gamma_n}^4\rightarrow \infty$,则对任意给定的时间点$t^*$,有 $$\bar{L}_X(2\gamma_n,x)\varepsilon_{\gamma_n}^{-\frac{3}{2}}\left\{\hat{\sigma}^2(t^*,x)-\sigma^2(t^*,x)\right\} \rightarrow_dN\left(0,16\varphi^{ind}\left[\frac{\partial\sigma(t^*,x)}{\partial x}\right]^2\right),$$ 其中$\bar{L}(2\gamma_n,x)=\frac{1}{\sigma^2(t^*,x)}L_X(2\gamma_n,x) =\frac{1}{\sigma^2(t^*,x)}\lim\limits_{\epsilon\rightarrow 0}\frac{1}{\epsilon}\int_0^{2\gamma_n}I_{[x,x+\epsilon]} (X_s)\sigma^2(t^*,X_s){\rm d}s$, $\varphi^{ind}=2\int_0^\infty\int_0^\infty ts\left(\frac{1}{2}I_{|t|\leq 1}\right)\left(\frac{1}{2}I_{|s|\leq 1}\right)\min(t,s){\rm d}t{\rm d}s$.

3 渐近性质的证明

证明局部估计量的渐近性质需要用到如下引理.

引理3.1如果有$h_{\gamma_n}\rightarrow0$,使得 $$\frac{1}{h_{\gamma_n}}\left[\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right]^{1/2}\rightarrow0,$$ 则有 $$\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}} \left(X_{t_i^{(\gamma_n)}}-x\right)\rightarrow_{\rm a.s.}\bar{L}(2\gamma_n,x).$$ 引理3.1的证明参见文献[9,定理1].

定理2.1的证明考虑(2.3)式,其可以表示为 \begin{eqnarray} \hat{\sigma}^2(t^*,x)&=&\frac{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)\tilde{\sigma}^2(t^*,X_{t_i^{(\gamma_n)}})} {\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)} \nonumber\\ &=&\frac{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)\left[\tilde{\sigma}^2(t^*,X_{t_i^{(\gamma_n)}})- \sigma^2(t^*,X_{t_i^{(\gamma_n)}})\right]} {\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)} \\ %(3.1)$$ &&+\frac{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right) \sigma^2(t^*,X_{t_i^{(\gamma_n)}})} {\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)} . %(3.2)$$ \end{eqnarray} 首先证明(3.2)式为 \begin{eqnarray*} &&\frac{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right) \sigma^2(t^*,X_{t_i^{(\gamma_n)}})} {\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)} \\ &=&\frac{\int_{t^*-\gamma_n}^{t^*+\gamma_n}K_{h_{\gamma_n}}\left(X_{s}-x\right)\sigma^2(t^*,X_{s}){\rm d}s+O_{\rm a.s.}\left(\frac{1}{h_{\gamma_n}} \left[\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right]^{1/2}\right)} {\int_{t^*-\gamma_n}^{t^*+\gamma_n}K_{h_{\gamma_n}}\left(X_{s}-x\right){\rm d}s+O_{\rm a.s.}\left(\frac{1}{h_{\gamma_n}} \left[\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right]^{1/2}\right)}, \end{eqnarray*} 其中符号$``O_{\rm a.s.}"$表示``几乎处处有界或依概率1有界". 考虑下式 \begin{eqnarray} \Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right) \sigma^2(t^*,X_{t_i^{(\gamma_n)}})-\int_{t^*-\gamma_n}^{t^*+\gamma_n}K_{h_{\gamma_n}}\left(X_{s}-x\right)\sigma^2(t^*,X_{s}){\rm d}s %(3.3)$$ \end{eqnarray} 由假设(A1)--(A3)和核函数$K(\cdot)$的性质,对于(3.3)式, 有 \begin{eqnarray*} &&\left|\sum\limits_{i=0}^{n_{\gamma_n}-1}\int_{b_i}^{b_{i+1}}\left[K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right) \sigma^2(t^*,X_{t_i^{(\gamma_n)}})-K_{h_{\gamma_n}}\left(X_{s}-x\right)\sigma^2(t^*,X_{s})\right]{\rm d}s\right| \\ &&+\left|\Delta_{\gamma_n}K_{h_{\gamma_n}}\left(X_{t_0^{(\gamma_n)}}-x\right) \sigma^2(t^*,X_{t_0^{(\gamma_n)}})\right|+\left|\Delta_{\gamma_n}K_{h_{\gamma_n}}\left(X_{t_{n_{\gamma_n}}^{(\gamma_n)}}-x\right) \sigma^2(t^*,X_{t_{n_{\gamma_n}}^{(\gamma_n)}})\right| \\ &\leq& \left|\sum\limits_{i=0}^{n_{\gamma_n}-1}\int_{b_i}^{b_{i+1}}\left[K_{h_{\gamma_n}}\left(X_{s}-x\right) \sigma^2(t^*,X_{t_i^{(\gamma_n)}})-K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)\sigma^2(t^*,X_{t_i^{(\gamma_n)}})\right]{\rm d}s\right| \\ &&+\left|\sum\limits_{i=0}^{n_{\gamma_n}-1}\int_{b_i}^{b_{i+1}}\left[K_{h_{\gamma_n}}\left(X_{s}-x\right) \sigma^2(t^*,X_{s})-K_{h_{\gamma_n}}\left(X_{s}-x\right)\sigma^2(t^*,X_{t_i^{(\gamma_n)}})\right]{\rm d}s\right| \\ &&+C_1O_{\rm a.s.}\left(\frac{\Delta_{\gamma_n}}{h_{\gamma_n}}\right) \\ &\leq& \frac{1}{h_{\gamma_n}}\sum\limits_{i=0}^{n_{\gamma_n}-1}\int_{b_i}^{b_{i+1}}\left|K'\left(\frac{\tilde{X}_{is}-x}{h_{\gamma_n}}\right)\right| \left|\frac{X_{s}-X_{t_i^{(\gamma_n)}}}{h_{\gamma_n}}\right|\left|\sigma^2(t^*,X_{t_i^{(\gamma_n)}})\right|{\rm d}s \\ &&+\left|\sum\limits_{i=0}^{n_{\gamma_n}-1}\int_{b_i}^{b_{i+1}}K_{h_{\gamma_n}}\left(X_{s}-x\right) \left[\sigma^2(t^*,X_{s})-\sigma^2(t^*,X_{t_i^{(\gamma_n)}})\right]{\rm d}s\right|+C_1O_{\rm a.s.}\left(\frac{\Delta_{\gamma_n}}{h_{\gamma_n}}\right), \end{eqnarray*} 其中$b_i=t^*-\gamma_n+i\Delta_{\gamma_n},i=0,1,2,\cdots,n_{\gamma_n}-1$, $C_1$是常数, $\tilde{X}_{is}$是$X_s$和$X_{t_i^{(\gamma_n)}}$之间的一个值. 定义 \begin{eqnarray} \kappa_{\gamma_n}=\max_{0\leq i\leq n_{\gamma_n}}\sup_{b_i\leq s\leq b_{i+1}}\left|X_{s}-X_{t_i^{(\gamma_n)}}\right|. %(3.4)$$ \end{eqnarray} 由文献[10]中第2章的定理9.25,得 \begin{eqnarray} P\left(\left[\limsup_{\Delta_{\gamma_n}\rightarrow0}\frac{\kappa_{\gamma_n}} {\left(\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right)^{1/2}}=C_2\right]\right)=1, %(3.5)$$ \end{eqnarray} 其中$C_2$是某个常数. 因此 $$\kappa_{\gamma_n}=O_{\rm a.s.}\left(\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right)^{1/2},$$ 若$h_{\gamma_n}\rightarrow0$, 使得 $$\frac{1}{h_{\gamma_n}}\left[\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right]^{1/2}\rightarrow0, $$ 则有 \begin{eqnarray} \frac{\kappa_{\gamma_n}}{h_{\gamma_n}}\rightarrow_{\rm a.s.}0. %(3.6)$$ \end{eqnarray} 由(3.6)式,得 \begin{eqnarray} K'\left(\frac{\tilde{X}_{is}-x}{h_{\gamma_n}}\right)=K'\left(\frac{X_{s}-x}{h_{\gamma_n}}+o_{\rm a.s.}(1)\right),i=0,1,2,\cdots,n_{\gamma_n}. %(3.7) \end{eqnarray} 由(3.4)式和(3.7)式, $K'$的绝对可积性以及$\bar{L}_X(t,\cdot)$和$\sigma^2(\cdot,\cdot)$ 的连续性, 得到 \begin{eqnarray*} &&\frac{\kappa_{\gamma_n}}{h_{\gamma_n}}\frac{1}{h_{\gamma_n}}\int_{t^*-\gamma_n}^{t^*+\gamma_n}\left|K'\left(\frac{X_{s}-x}{h_{\gamma_n}} +o_{\rm a.s.}(1)\right)\right|\left|\sigma^2(t^*,X_s+o_{\rm a.s.}(1))\right|{\rm d}s \\ &=&\frac{\kappa_{\gamma_n}}{h_{\gamma_n}}\frac{1}{h_{\gamma_n}}\int_{-\infty}^{+\infty}\left|K'\left(\frac{p-x}{h_{\gamma_n}} +o_{\rm a.s.}(1)\right)\right|\left|\sigma^2(t^*,p)\right|\bar{L}_X(2\gamma_n,p){\rm d}p \\ &=&\frac{\kappa_{\gamma_n}}{h_{\gamma_n}}\frac{1}{h_{\gamma_n}}\int_{-\infty}^{+\infty}\left|K'(q +o_{\rm a.s.}(1))\right|\left|\sigma^2(t^*,qh_{\gamma_n}+x)\right|\bar{L}_X(2\gamma_n,qh_{\gamma_n}+x){\rm d}q \\ &\leq & C_3\left(\frac{\kappa_{\gamma_n}}{h_{\gamma_n}}\right)O_{\rm a.s.}\left(\bar{L}_X(2\gamma_n,x)\right) \\ &\leq & C_3\left(\frac{\kappa_{\gamma_n}}{h_{\gamma_n}}\right)O_{\rm a.s.}\left(\gamma_n^{1/2}\right) , \end{eqnarray*} 其中最后一个不等式成立是由于 $$\bar{L}_X(2\gamma_n,x)=\gamma_n^{1/2}\frac{1}{\sigma}L_w\left(1,\frac{x}{\sigma\gamma_n^{1/2}}\right)=O_{\rm a.s.}(\gamma_n^{1/2}). $$ 同理可证 $$\left|\sum\limits_{i=0}^{n_{\gamma_n}-1}\int_{b_i}^{b_{i+1}}K_{h_{\gamma_n}}\left(X_{s}-x\right) \left[\sigma^2(t^*,X_{s})-\sigma^2(t^*,X_{t_i^{(\gamma_n)}})\right]{\rm d}s\right|\leq C_4 \kappa_{\gamma_n}O_{\rm a.s.}(\gamma_n^{1/2}).$$ 由上述可得 \begin{eqnarray*} &&\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right) \sigma^2(t^*,X_{t_i^{(\gamma_n)}}) \\ &=&\int_{t^*-\gamma_n}^{t^*+\gamma_n}K_{h_{\gamma_n}}\left(X_{s}-x\right)\sigma^2(t^*,X_{s}){\rm d}s+O_{\rm a.s.}\left(\frac{\gamma_n^{1/2}}{h_{\gamma_n}} \left[\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right]^{1/2}\right). \end{eqnarray*} 由类似的方法可得 \begin{eqnarray*} &&\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right) \\ &=&\int_{t^*-\gamma_n}^{t^*+\gamma_n}K_{h_{\gamma_n}}\left(X_{s}-x\right){\rm d}s+O_{\rm a.s.}\left(\frac{\gamma_n^{1/2}}{h_{\gamma_n}} \left[\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right]^{1/2}\right). \end{eqnarray*} 故对于(3.2)式,如果有$\gamma_n\rightarrow0, h_{\gamma_n}\rightarrow0$,使得 $$\frac{\gamma_n^{1/2}}{n_{\gamma_n}}\left[\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right]^{1/2}\rightarrow0,$$ 则由引理1.3得 \begin{eqnarray*} &&\frac{\int_{t^*-\gamma_n}^{t^*+\gamma_n}K_{h_{\gamma_n}} \left(X_{s}-x\right)\sigma^2(t^*,X_{s}){\rm d}s+ O_{\rm a.s.}\left(\frac{1}{h_{\gamma_n}} \left[\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right]^{1/2}\right)} {\int_{t^*-\gamma_n}^{t^*+\gamma_n}K_{h_{\gamma_n}} \left(X_{s}-x\right){\rm d}s+O_{\rm a.s.}\left(\frac{1}{h_{\gamma_n}} \left[\Delta_{\gamma_n}\log(1/\Delta_{\gamma_n})\right]^{1/2}\right)} \\ &=&\frac{\sigma^2(t^*,x)s(x)+o_{\rm a.s.}(1)}{s(x)+ o_{\rm a.s.}(1)}\rightarrow_{\rm a.s.}\sigma^2(t^*,x), \end{eqnarray*} 其中$s(x)$是过程的速率函数.

现在考虑(3.1)式,下面证明: 对固定的$X_{t_i^{(\gamma_n)}}$,有下式成立 $$\tilde{\sigma}^2(t^*,X_{t_i^{(\gamma_n)}})=\sigma^2(t^*,X_{t_i^{(\gamma_n)}})+o_{\rm a.s.}(1).$$ 由$\sigma^2(\cdot,\cdot)$的Lipschitz性质,有 \begin{eqnarray*} &&\frac{1}{m_{\gamma_n}(t_i^{(\gamma_n)})\Delta_{\gamma_n}} \sum\limits_{j=0}^{m_{\gamma_n}(t_i^{(\gamma_n)})-1}\left[X_{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}-X_{\tau_{i,j}^{(\gamma_n)}}\right]^2 -\sigma^2(t^*,X_{t_i^{(\gamma_n)}}) \\ &=&\frac{1}{2m_{\gamma_n}(t_i^{(\gamma_n)})\Delta_{\gamma_n}} \sum\limits_{j=0}^{m_{\gamma_n}(t_i^{(\gamma_n)})-1}\int_{\tau_{i,j}^{(\gamma_n)}}^{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}2\left(X_s-X_{t_i^{(\gamma_n)}} \right)\sigma(t^*,X_s){\rm d}B_s \\ &&+\frac{1}{2m_{\gamma_n}(t_i^{(\gamma_n)})\Delta_{\gamma_n}} \sum\limits_{j=0}^{m_{\gamma_n}(t_i^{(\gamma_n)})-1}\int_{\tau_{i,j}^{(\gamma_n)}}^{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}2\left(X_s-X_{t_i^{(\gamma_n)}} \right) \mu(t^*,X_s){\rm d}s +C_5O_{\rm a.s.}(\kappa_{\gamma_n}), \end{eqnarray*} 其中 $$\int_{\tau_{i,j}^{(\gamma_n)}}^{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}2\left(X_s-X_{t_i^{(\gamma_n)}}\right) \mu(t^*,X_s){\rm d}s=o_{\rm a.s.} \bigg(\int_{\tau_{i,j}^{(\gamma_n)}}^{\tau_{i,j}^{(\gamma_n)} +\Delta_{\gamma_n}}2\left(X_s-X_{t_i^{(\gamma_n)}}\right) \sigma(t^*,X_s){\rm d}B_s\bigg).$$ 定义积分为 $$y_{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}=\int_{\tau_{i,j}^{(\gamma_n)}}^{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}2 \left(X_s-X_{t_i^{(\gamma_n)}}\right) \sigma(t^*,X_s){\rm d}B_s, $$ 上式定义的积分关于$F_{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}$ 可测, 由It\^{o}积分的性质, 得$E\big(y_{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}\big)=0$, 又由It\^{o}积分的等距性,则对所有的$j\leq m_{\gamma_n}$,有 $$\theta_{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}= {\rm Var}\left(y_{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}\right) <\infty. $$ 因此$\big(y_{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}, F_{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}\big)$是一个均值为零, 方差有限的鞅差序列,由强大数定律知, 当$m_{\gamma_n}(t_{i}^{(\gamma_n)})\rightarrow\infty$时,有 $$\frac{1}{2m_{\gamma_n}(t_i^{(\gamma_n)})\Delta_{\gamma_n}} \sum\limits_{j=0}^{m_{\gamma_n}(t_i^{(\gamma_n)})-1}y_{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}} =o_{\rm a.s.}(1).$$ 故对每个$0\leq i\leq n_{\gamma_n}$,有 $$\tilde{\sigma}^2(t^*,X_{t_i^{(\gamma_n)}})\rightarrow_{\rm a.s.}\sigma^2(t^*,X_{t_i^{(\gamma_n)}}). $$ 下面考虑收敛速度问题 \begin{eqnarray} &&\frac{1}{2m_{\gamma_n}(t_i^{(\gamma_n)})\Delta_{\gamma_n}} \sum\limits_{j=0}^{m_{\gamma_n}(t_i^{(\gamma_n)})-1}\int_{\tau_{i,j}^{(\gamma_n)}}^{\tau_{i,j}^{(\gamma_n)}+\Delta_{\gamma_n}}2\left(X_s-X_{t_i^{(\gamma_n)}} \right)\sigma(t^*,X_s){\rm d}B_s \nonumber\\ &=&\frac{\frac{1}{2\varepsilon_{\gamma_n}}\sum\limits_{j=0}^{n_{\gamma_n}}I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}} \int_{t_j^{(\gamma_n)}}^{t_{j+1}^{(\gamma_n)}}2\left(X_s-X_{t_i^{(\gamma_n)}} \right)\sigma(t^*,X_s){\rm d}B_s}{\frac{\Delta_{\gamma_n}}{2\varepsilon_{\gamma_n}} \sum\limits_{j=0}^{n_{\gamma_n}}I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}}}. %(3.8)$$ \end{eqnarray} 类似于文献[6,定理2]的证明,得到 \begin{eqnarray*} &&\sqrt{\bar{L}_X(2\gamma_n,X_{t_i^{(\gamma_n)}})\varepsilon_{\gamma_n}} \frac{\frac{1}{2\varepsilon_{\gamma_n}}\sum\limits_{j=0}^{n_{\gamma_n}}I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}} \int_{t_j^{(\gamma_n)}}^{t_{j+1}^{(\gamma_n)}}2\left(X_s-X_{t_i^{(\gamma_n)}} \right)\sigma(t^*,X_s){\rm d}B_s}{\frac{\Delta_{\gamma_n}}{2\varepsilon_{\gamma_n}} \sum\limits_{j=0}^{n_{\gamma_n}}I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}}} \\ &=&O_{\rm a.s.}(1). \end{eqnarray*} 故 \begin{eqnarray*} &&\tilde{\sigma}^2(t^*,X_{t_i^{(\gamma_n)}})-\sigma^2(t^*,X_{t_i^{(\gamma_n)}}) \\ &=&\frac{\frac{1}{2\varepsilon_{\gamma_n}}\sum\limits_{j=0}^{n_{\gamma_n}}I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}} \int_{t_j^{(\gamma_n)}}^{t_{j+1}^{(\gamma_n)}}2\left(X_s-X_{t_i^{(\gamma_n)}} \right)\sigma(t^*,X_s){\rm d}B_s}{\frac{\Delta_{\gamma_n}}{2\varepsilon_{\gamma_n}} \sum\limits_{j=0}^{n_{\gamma_n}}I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}}} +C_5O_{\rm a.s.}(\kappa_{\gamma_n}) \\ &=&O_{\rm a.s.}\left(\frac{1}{\sqrt{\bar{L}_X(2\gamma_n,X_{t_i^{(\gamma_n)}})\varepsilon_{\gamma_n}}}\right)+C_5O_{\rm a.s.}(\kappa_{\gamma_n}). \end{eqnarray*} 选择适当的带宽参数$\varepsilon_{\gamma_n}$, 则有 $$O_{\rm a.s.}\left(\frac{1}{\sqrt{\bar{L}_X(2\gamma_n,X_{t_i^{(\gamma_n)}})\varepsilon_{\gamma_n}}}\right)=o_{\rm a.s.}(1). $$ 因此,定理得证.

定理2.2的证明考虑下式 \begin{eqnarray} &&\hat{\sigma}^2(t^*,x)-\sigma^2(t^*,x) \nonumber\\ &=&\frac{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)\tilde{\sigma}^2(t^*,X_{t_i^{(\gamma_n)}})} {\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}-\sigma^2(t^*,x) \nonumber\\ &=&\frac{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)\tilde{\sigma}^2(t^*,X_{t_i^{(\gamma_n)}})} {\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}-\frac{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}} -x\right)\sigma^2(t^*,X_{t_i^{(\gamma_n)}})}{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)} %(3.9)$$ \\ &&+\frac{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)\sigma^2(t^*,X_{t_i^{(\gamma_n)}})} {\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}-\frac{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}} -x\right)\sigma^2(t^*,x)}{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}. %(3.10)$$ \end{eqnarray} 首先考虑(3.10)式,由引理1.1和核函数$K(\cdot)$的对称性, (3.10)式的分子部分可以表示为 \begin{eqnarray*} &&\int_{-\infty}^{+\infty}K(c)\frac{\partial\sigma^2(t^*,x)}{\partial x}ch_{\gamma_n}\left(\frac{L_X(2\gamma_n,x+ch_{\gamma_n})-L_X(2\gamma_n,x)} {\sigma^2(t^*,x+ch_{\gamma_n})}\right){\rm d}c \\ &&+\int_{-\infty}^{+\infty}K(c)\frac{\partial\sigma^2(t^*,x)}{\partial x}ch_{\gamma_n}\left(\frac{\sigma^2(t^*,x)-\sigma^2(t^*,x+ch_{\gamma_n})} {\sigma^2(t^*,x+ch_{\gamma_n})\sigma^2(t^*,x)}\right)L_X(2\gamma_n,x){\rm d}c \\ &&+\int_{-\infty}^{+\infty}K(c)\frac{1}{2}\frac{\partial^2\sigma^2(t^*,x)}{\partial x^2}c^2h_{\gamma_n}^2\left(\frac{L_X(2\gamma_n,x+ch_{\gamma_n})} {\sigma^2(t^*,x+ch_{\gamma_n})}\right){\rm d}c \\ &\triangleq & A_1+A_2+A_3. \end{eqnarray*} 由引理1.2,$A1$有以下极限形式 \begin{eqnarray*} A1&=&2h_{\gamma_n}^{3/2}\frac{\partial\sigma^2(t^*,x)}{\partial x}\frac{1}{\sigma^2(t^*,x)}\int_{-\infty}^{+\infty}cK(c)\frac{1}{2\sqrt{h_{\gamma_n}}}\left[L_X(2\gamma_n,x+ch_{\gamma_n}) -L_X(2\gamma_n,x)\right]{\rm d}c \\ &=&2h_{\gamma_n}^{3/2}\frac{\partial\sigma^2(t^*,x)}{\partial x}\frac{1}{\sigma^2(t^*,x)}\int_{0}^{+\infty}cK(c)\frac{1}{2\sqrt{h_{\gamma_n}}}\left[L_X(2\gamma_n,x+ch_{\gamma_n})-L_X(2\gamma_n,x)\right]{\rm d}c \\ &&+2h_{\gamma_n}^{3/2}\frac{\partial\sigma^2(t^*,x)}{\partial x}\frac{1}{\sigma^2(t^*,x)}\int_{-\infty}^{0}cK(c)\frac{1}{2\sqrt{h_{\gamma_n}}}\left[L_X(2\gamma_n,x+ch_{\gamma_n})-L_X(2\gamma_n,x)\right]{\rm d}c \\ &\rightarrow_d&2h_{\gamma_n}^{3/2}\frac{\partial\sigma^2(t^*,x)}{\partial x}\frac{1}{\sigma^2(t^*,x)}\int_{-\infty}^{0}cK(c)W^{\otimes}(L_X(2\gamma_n,x),-c){\rm d}c \\ &&+2h_{\gamma_n}^{3/2}\frac{\partial\sigma^2(t^*,x)}{\partial x}\frac{1}{\sigma^2(t^*,x)}\int_{0}^{+\infty}cK(c)W^{\oplus}(L_X(2\gamma_n,x),c){\rm d}c \\ &=_d&2h_{\gamma_n}^{3/2}\frac{\partial\sigma^2(t^*,x)}{\partial x}\frac{1}{\sigma(t^*,x)}\sqrt{\bar{L}_X(2\gamma_n,x)} \bigg(\int_{0}^{+\infty}cK(c)W^{\oplus}(1,c){\rm d}c \\ &&+\int_{-\infty}^{0}cK(c)W^{\otimes}(1,x),-c){\rm d}c \bigg), \end{eqnarray*} 其中$W^{\oplus}$和$W^{\otimes}$是相互独立的Brownian sheet (参见文献[8]中第13章定理2.3),符号$``=_d"$表示``依分布等价". 又知 \begin{eqnarray*} \int_{0}^{+\infty}cK(c)W^{\oplus}(1,c){\rm d}c &=_d&\int_{0}^{+\infty}cK(c)W^{\oplus}(c){\rm d}c \\ &=_d&N\left(0,\int_{0}^{+\infty}\int_{0}^{+\infty} usK(u)K(s)\min(u,s){\rm d}u{\rm d}s\right), \end{eqnarray*} 类似地 \begin{eqnarray*} \int_{-\infty}^{0}cK(c)W^{\otimes}(1,-c){\rm d}c &=_d&\int_{-\infty}^{0}cK(c)W^{\otimes}(-c){\rm d}c \\ &=_d&N\left(0,-\int_{-\infty}^{0}\int_{-\infty}^{0} usK(u)K(s)\max(u,s){\rm d}u{\rm d}s\right). \end{eqnarray*} 故 \begin{eqnarray*} &&2h_{\gamma_n}^{3/2}\frac{\partial\sigma^2(t^*,x)}{\partial x}\frac{1}{\sigma(t^*,x)}\sqrt{\bar{L}_X(2\gamma_n,x)} \bigg(\int_{0}^{+\infty}cK(c)W^{\oplus}(1,c){\rm d}c \\ &&+ \int_{-\infty}^{0}cK(c)W^{\otimes}(1,x),-c){\rm d}c \bigg) \\ &=_d&2h_{\gamma_n}^{3/2}\frac{\partial\sigma^2(t^*,x)}{\partial x}\frac{1}{\sigma(t^*,x)}\sqrt{\bar{L}_X(2\gamma_n,x)}N \left(0,2\int_{0}^{+\infty}\int_{0}^{+\infty} usK(u)K(s)\min(u,s){\rm d}u{\rm d}s\right) \\ &=_d&h_{\gamma_n}^{3/2}MN\left(0,16\varphi \left(\frac{\partial\sigma(t^*,x)}{\partial x}\right)^2\bar{L}_X(2\gamma_n,x)\right), \end{eqnarray*} 其中$\varphi=2\int_{0}^{+\infty}\int_{0}^{+\infty}usK(u)K(s) \min(u,s){\rm d}u{\rm d}s$. 因此 \begin{eqnarray*} && \frac{1}{h_{\gamma_n}^{3/2}}\left(\frac{\int_{-\infty}^{+\infty}K(c)\frac{\partial\sigma^2(t^*,x)}{\partial x}ch_{\gamma_n}\left(\frac{L_X(2\gamma_n,x+ch_{\gamma_n})-L_X(2\gamma_n,x)} {\sigma^2(t^*,x+ch_{\gamma_n})}\right){\rm d}c}{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}\right) \\ &&\rightarrow_dMN\left(0,16\varphi\left(\frac{\partial\sigma(t^*,x)}{\partial x}\right)^2/\bar{L}_X(2\gamma_n,x)\right). \end{eqnarray*} 对于$A_2,A_3$,由$\sigma^2(\cdot,\cdot)$的Lipschitz性质,得 $$\frac{A_2}{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}+ \frac{A_3}{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}=O_{\rm a.s.}(h_{\gamma_n}^2). $$ 故对(3.10)式,有 \begin{eqnarray*} &&\frac{1}{h_{\gamma_n}^{3/2}}\left[\frac{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)\sigma^2(t^*,X_{t_i^{(\gamma_n)}})} {\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}-\frac{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}} -x\right)\sigma^2(t^*,x)}{\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}\right] \\ &=_d&\frac{1}{h_{\gamma_n}^{3/2}}\left(\frac{\int_{-\infty}^{+\infty}K(c)\frac{\partial\sigma^2(t^*,x)}{\partial x}ch_{\gamma_n}\left(\frac{L_X(2\gamma_n,x+ch_{\gamma_n})-L_X(2\gamma_n,x)} {\sigma^2(t^*,x+ch_{\gamma_n})}\right){\rm d}c}{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)} +O_{\rm a.s.}(h_{\gamma_n}^2)\right) \\ &=_d&MN\left(0,16\varphi\left(\frac{\partial\sigma(t^*,x)}{\partial x}\right)^2/\bar{L}_X(2\gamma_n,x)\right). \end{eqnarray*} 下面考虑(3.9)式, 由It\^{o}引理,(3.9)式的分子部分可以表示为 \begin{eqnarray*} &&\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)\frac{\sum\limits_{j=0}^{n_{\gamma_n}} I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}}\frac{1}{2}\left[\int_{t_j^{(\gamma_n)}}^{t_{j+1}^{(\gamma_n)}} (\sigma^2(t^*,x)-\sigma^2(t^*,X_{t_i^{(\gamma_n)}})){\rm d}s\right]} {\sum\limits_{j=0}^{n_{\gamma_n}}I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}}} \\ &&+\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)\frac{\sum\limits_{j=0}^{n_{\gamma_n}} I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}}\frac{1}{2}\left[\int_{t_j^{(\gamma_n)}}^{t_{j+1}^{(\gamma_n)}} 2(X_s-X_{t_i^{(\gamma_n)}})\sigma(t^*,X_s){\rm d}B_s\right]} {\sum\limits_{j=0}^{n_{\gamma_n}}I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}}} \\ &&+\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)\frac{\sum\limits_{j=0}^{n_{\gamma_n}} I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}}\frac{1}{2}\left[\int_{t_j^{(\gamma_n)}}^{t_{j+1}^{(\gamma_n)}} 2(X_s-X_{t_i^{(\gamma_n)}})\mu(t^*,X_s){\rm d}s\right]} {\sum\limits_{j=0}^{n_{\gamma_n}}I_{\{|X_{t_j}^{(\gamma_n)}-X_{t_i}^{(\gamma_n)}|\leq\varepsilon_{\gamma_n}\}}} \\ &&+O_{\rm a.s.}\left(\frac{\Delta_{\gamma_n}}{\varepsilon_{\gamma_n}}\right) \\ &\triangleq & B_1+B_2+B_3+O_{\rm a.s.}\left(\frac{\Delta_{\gamma_n}}{\varepsilon_{\gamma_n}}\right). \end{eqnarray*} 类似于文献[9,定理3]的证明,我们有 若$h_{\gamma_n}=o(\varepsilon_{\gamma_n})$,则 \begin{eqnarray} \sqrt{\frac{\varepsilon_{\gamma_n}}{\Delta_{\gamma_n}}}\left(\frac{B_2} {\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}\right) \rightarrow_dMN\left(0,\frac{2\sigma^4(t^*,x)}{\bar{L}_X(2\gamma_n,x)}\right) %(3.11)$$ \end{eqnarray} 且 \begin{eqnarray*} B_1& =_d&\int_{-\infty}^{+\infty}K(c)\frac{\frac{1}{2}\int_{-\infty}^{+\infty}I_{\{|a|\leq1\}}\left(\frac{\partial\sigma^2(t^*,x)}{\partial x}\varepsilon_{\gamma_n}a\right)\left(\frac{L_X(2\gamma_n,x+a\varepsilon_{\gamma_n})-L_X(2\gamma_n,x)} {\sigma^2(t^*,x+a\varepsilon_{\gamma_n})}\right){\rm d}a}{\frac{1}{2}\int_{-\infty}^{+\infty}I_{\{|a|\leq1\}} \bar{L}_X(2\gamma_n,x+a\varepsilon_{\gamma_n}){\rm d}a} \\ &&\cdot \bar{L}_X(2\gamma_n,x+ch_{\gamma_n}){\rm d}c \\ &&+\int_{-\infty}^{+\infty}K(c)\frac{\frac{1}{2}\int_{-\infty}^{+\infty}I_{\{|a|\leq1\}}\left(\frac{\partial\sigma^2(t^*,x)}{\partial x}\varepsilon_{\gamma_n}a\right)\left(\frac{\sigma^2(t^*,x)-\sigma^2(t^*,x+a\varepsilon_{\gamma_n})} {\sigma^2(t^*,x+a\varepsilon_{\gamma_n})\sigma^2(t^*,x)}\right)L_X(2\gamma_n,x){\rm d}a}{\frac{1}{2}\int_{-\infty}^{+\infty} I_{\{|a|\leq1\}} \bar{L}_X(2\gamma_n,x+a\varepsilon_{\gamma_n}){\rm d}a} \\ &&\cdot\bar{L}_X(2\gamma_n,x+ch_{\gamma_n}){\rm d}c \\ &&+\int_{-\infty}^{+\infty}K(c)\frac{\frac{1}{2}\int_{-\infty}^{+\infty}I_{\{|a|\leq1\}}\left(\frac{1}{2}\frac{\partial^2\sigma^2(t^*,x)}{\partial x^2}\varepsilon_{\gamma_n}^2a^2\right)\bar{L}_X(2\gamma_n,x+a\varepsilon_{\gamma_n}){\rm d}a}{\frac{1}{2}\int_{-\infty}^{+\infty}I_{\{|a|\leq1\}} \bar{L}_X(2\gamma_n,x+a\varepsilon_{\gamma_n}){\rm d}a} \\ &&\cdot\bar{L}_X(2\gamma_n,x+ch_{\gamma_n}){\rm d}c \\ &&-\int_{-\infty}^{+\infty}K(c)\left(\frac{\partial\sigma^2(t^*,x)}{\partial x}h_{\gamma_n}c+\frac{1}{2}\frac{\partial^2\sigma^2(t^*,x)}{\partial x^2}h_{\gamma_n}^2c^2\right)\bar{L}_X(2\gamma_n,x+ch_{\gamma_n}){\rm d}c. \end{eqnarray*} 由引理1.2,得 \begin{equation} \frac{1}{\varepsilon_{\gamma_n}^{3/2}}\left(\frac{B_1} {\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}\right) \rightarrow_dMN\left(0,16\varphi^{ind}\left(\frac{\partial\sigma(t^*,x)}{\partial x}\right)^2\frac{1}{\bar{L}_X(2\gamma_n,x)}\right), % (3.12)$$ \end{equation} 其中 $$\varphi^{ind}=2\int_0^\infty\int_0^\infty ts\left(\frac{1}{2}I_{|t|\leq 1}\right)\left(\frac{1}{2}I_{|s|\leq 1}\right)\min(t,s){\rm d}t{\rm d}s. $$

注意到 $$\frac{B_3}{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}} K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}=O_{\rm a.s.}(\kappa_{\gamma_n}). $$ 综合(3.10)式和(3.9)式的分析,得 \begin{eqnarray*} \hat{\sigma}^2(t^*,x)-\sigma^2(t^*,x) &=&\frac{A_1}{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)} +\frac{A_2}{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)} \\ &&+\frac{A_3}{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)} +\frac{B_1}{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)} \\ &&+\frac{B_2}{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)} +\frac{B_3}{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}. \end{eqnarray*} 故当$h_{\gamma_n}=o(\varepsilon_{\gamma_n})$和 $\varepsilon_{\gamma_n}^4/\Delta_{\gamma_n}\rightarrow0$时, 由(3.11)式,得 \begin{eqnarray*} &&\sqrt{\frac{\varepsilon_{\gamma_n}}{\Delta_{\gamma_n}}}\left\{\frac{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}} \left(X_{t_i^{(\gamma_n)}}-x\right)\tilde{\sigma}^2(t^*,X_{t_i^{(\gamma_n)}})} {\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}-\sigma^2(t^*,x)\right\} \\ &=_d& \sqrt{\frac{\varepsilon_{\gamma_n}}{\Delta_{\gamma_n}}}\left\{\frac{B_2} {\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}+O_p\left(\varepsilon_{\gamma_n}^{3/2}\right)\right\} \\ &\rightarrow_d& MN\left(0,\frac{2\sigma^4(t^*,x)}{\bar{L}_X(2\gamma_n,x)}\right). \end{eqnarray*} 若当$h_{\gamma_n}=o(\varepsilon_{\gamma_n})$和$\varepsilon_{\gamma_n}^4/\Delta_{\gamma_n}\rightarrow\infty$时, 由(3.12)式,得 \begin{eqnarray*} &&\frac{1}{\varepsilon_{\gamma_n}^{3/2}}\left\{\frac{\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}} \left(X_{t_i^{(\gamma_n)}}-x\right)\tilde{\sigma}^2(t^*,X_{t_i^{(\gamma_n)}})} {\Delta_{\gamma_n}\sum\limits_{i=0}^{n_{\gamma_n}}K_{h_{\gamma_n}}\left(X_{t_i^{(\gamma_n)}}-x\right)}-\sigma^2(t^*,x)\right\} \\ &&\rightarrow_dMN\left(0,16\varphi^{ind}\left(\frac{\partial\sigma(t^*,x)}{\partial x}\right)^2\frac{1}{\bar{L}_X(2\gamma_n,x)}\right). \end{eqnarray*} 证毕.

参考文献
[1] Ho T S Y, Lee S B. Term structure movements and pricing interest rate contingent claims. J Finance, 1986, 41: 1011-1029
[2] Hull J, White A. Pricing interest-rate derivative securities. Rev Finan Stud, 1990, 3: 573-592
[3] Black F, Karasinski P. Bond and option pricing when short rates are lognormal. Finan Analysts J, 1991, 47: 52-59
[4] Fan J, Jiang J, Zhang C, Zhou Z. Time-dependent diffusion models for term structure dynamics and the stock price volatility. Statistica Sinica, 2003, 13: 965-992
[5] Fan J, Huang T. Profile likelihood inferences on semi-parametric varying-coefficient partially linear models. Bernoulli, 2005, 11: 1031-1057
[6] 陈萍, 王金德. 时变扩散模型中扩散系数的小波估计. 中国科学(A辑), 2007, 37(6): 719-732
[7] 马雷, 陈萍. 时变扩散模型中扩散系数的核估计. 应用概率统计, 2012, 28(5): 489-498
[8] Revuz D, Yor M. Continuous Martingales and Brownian Motion. New York: Springer-Verlag, 1998
[9] Bandi F M, Phillips P C B. Fully nonparametric estimation of scalar diffusion models. Econometrica, 2003, 71: 241-283
[10] Karatzas I, Shreve S E. Brownian Motion and Stochastic Calculus. New York: Springer-Verlag, 1991