数学物理学报  2015, Vol. 35 Issue (2): 324-331   PDF (317 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
崔苗苗
曹小红
拓扑一致降标与Weyl定理的摄动
崔苗苗, 曹小红     
陕西师范大学数学与信息科学学院 西安 710062
摘要:若σ(T)\σw(T)⊆π00(T), 则称算子T满足Browder定理, 其中σ(T)和σw(T)分 别表示算子T的谱和Weyl 谱, 且π00(T)={λ∈isoσ(T);0N(T-λI)< ∞}. 若σ(T)\σw(T)=π00(T), 则称T满足Weyl定理. 该文利用拓扑一致降标域的特征, 研究了Browder定理在紧摄动下的稳定性,并且给出了Browder定理的紧摄动具有稳定性的算子的特征.
关键词Browder定理     紧摄动     拓扑一致降标    
Topological Uniform Descent and the Perturbation of Weyl's Theorem
Cui Miaomiao, Cao Xiaohong     
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062
Abstract: An operator T is said to satisfy Browder's theorem if σ(T)\σw(T)⊆π00(T), where σ(T) and σw(T) denote the spectrum and the Weyl spectrum respectively, and π00(T)={λ∈isoσ(T);0N(T-λI)< ∞}. If σ(T)\σw(T)=π00(T), we say T satisfies Weyl's theorem. Using the characteristics of Topological uniform descent domain, the stability of Browder's theorem under compact perturbations is investigated, and those operators which have this stability are characterized.
Key words: Browder's theorem     Compact perturbations     Topological uniform descent    
1 预备知识

20世纪90年代,Weyl定理备受关注, 许多学者对Weyl定理进行了变形和推广,定义了Browder 定理、a-Weyl定理、a-Browder定理等,并且讨论了各种定理之间的关系. 之后有些学者用算子半Fredholm域的特征刻画了Weyl定理、 Browder定理、a-Weyl定理、a-Browder定理等的摄动(如文献[1]), 使得Weyl型定理的研究得到了进一步的深入. 本文利用算子的拓扑一致降标域的特点, 来研究Browder定理和Weyl定理在紧摄动下的稳定性, 并且给出了Browder定理和Weyl定理的紧摄动具有稳定性的算子的特征.

在本文中,$H$表示一个无限维的复Hilbert空间, $B(H)$为$H$上的有界线性算子的全体, ${\mathcal{K}}(H)$表示$B(H)$中紧算子的全体. 对算子$T\in B(H)$, $n(T)$表示零空间$N(T)$的维数,$d(T)$表示值域$R(T)$的余维数. 称$T\in B(H)$为一个上半Fredholm算子,若$n(T)<\infty$且$R(T)$闭; 特殊地, 当$n(T)=0$且$R(T)$闭时,称算子$T$ 为下有界算子. 若$d(T)<\infty$且$R(T)$闭,则称$T\in B(H)$为一个下半Fredholm算子. 上半Fredholm算子和下半Fredholm算子统称为半Fredholm算子. 若$T\in B(H)$为半Fredholm算子,则$T$的指标$ind(T)$定义为$ind(T)=n(T)-d(T)$. 称$T$为$B(H)$上的Fredholm算子,若$R(T)$闭且$n(T)$和$d(T)$都有限. 指标为0的Fredholm算子称为Weyl算子. 算子$T$的升标$asc(T)$为满足$N(T^n)=N(T^{n+1})$的最小的非负整数, 当这样的整数不存在时,则记$asc(T)=+\infty$; 而算子$T$的降标$des(T)$为满足$R(T^n)=R(T^{n+1})$ 的最小的非负整数, 同样当这样的整数不存在时,则记$des(T)=+\infty$. 当$T$ 为有有限升标和有限降标的Fredholm算子时,称$T$为Browder算子. 若$asc(T)<\infty$和$des(T)<\infty$同时成立, 我们就说算子$T$为Drazin可逆; 若算子$T-\lambda I$不可逆但Drazin可逆, 则称$\lambda$为算子$T$的极点,用$\pi(T)$表示$T$的所有极点的全体.

以下给出本文涉及到的算子的谱集和预解集.

算子$T$的谱$\sigma(T)=\{\lambda\in{\Bbb C}: T-\lambda I$不可逆$\}$,

算子$T$的半Fredholm谱$\sigma_{SF}(T)=\{\lambda\in {\Bbb C}:T-\lambda I$不为半Fredholm算子$\}$,

算子$T$的逼近点谱$\sigma_a(T)=\{\lambda\in{\Bbb C}:T-\lambda I$ 不为下有界算子$\}$,

算子$T$的本质谱$\sigma_{e}(T)=\{\lambda\in {\Bbb C}:T-\lambda I$ 不为Fredholm算子$\}$,

算子$T$的Weyl谱$\sigma_{w}(T)=\{\lambda\in{\Bbb C}:T-\lambda I$ 不为Weyl算子$\}$,

算子$T$的Browder谱$\sigma_{b}(T)=\{\lambda\in{\Bbb C}:T-\lambda I$ 不为Browder算子$\}$,

算子$T$的Drazin谱$\sigma_{D}(T)=\{\lambda\in{\Bbb C}:T-\lambda I$ 不为Drazin可逆算子$\}$,

算子$T$的点谱$\sigma_p(T)=\{\lambda\in{\Bbb C}:n(T-\lambda I)>0\}$.

令$\rho(T)={\Bbb C}\backslash\sigma(T)$,$\rho_{SF}(T)={\Bbb C}\backslash\sigma_{SF}(T)$,$\rho_{a}(T)={\Bbb C}\backslash\sigma_{a}(T)$,$\rho_{e}(T)={\Bbb C}\backslash\sigma_{e}(T)$,$\rho_{w}(T)={\Bbb C}\backslash\sigma_{w}(T)$,$\rho_{b}(T)={\Bbb C}\backslash\sigma_{b}(T)$,$\rho_{D}(T)={\Bbb C}\backslash\sigma_{D}(T)$.

2 拓扑一致降标及Weyl定理

对$T\in B(H)$,任给$n\in{\Bbb N}$, 定义$R(T^n)$上的新范数$\|\cdot\|_n$: 对$y\in R(T^n)$, $\|y\|_n=inf\{\|x\|: y=T^nx\}$. 由 $\|\cdot\|_n$诱导的拓扑成为$R(T^n)$上的算子值域拓扑. 如果存在$d\in{\Bbb N}$, 使得$R(T)+N(T^d)=R(T)+N(T^\infty)$并且$R(T^{d+1})$按照 $R(T^d)$上的算子值域拓扑闭,称$T$对$n\geq d$有拓扑一致降标. 令 $$\rho_\tau(T)=\{\lambda\in{\Bbb C}: \mbox{存在 $d\in{\Bbb N},$ 使得当$n\geq d$ 时,$ T-\lambda I$ 有拓扑一致降标}\}, $$ $$\rho_{\tau_d}(T)=\{\lambda\in{\Bbb C}: \mbox{存在 $d\in{\Bbb N^{+}}$,使得当 $n\geq d$ 时,$T-\lambda I$ 有拓扑一致降标}\}, $$ 且令$\sigma_{\tau}(T)={\Bbb C}\backslash \rho_\tau(T)$. 由文献[2]中定理 3.2、引理4.2以及定理4.7可知$\rho_{\tau}(T)\subseteq{\Bbb C}$为开集, 因而$\sigma_{\tau}(T)\subseteq{\Bbb C}$为闭集. 容易看出 $\rho_{SF}(T)\subseteq\rho_\tau(T)$. 关于拓扑一致降标的更多的性质, 参见文献[2].

下面我们用$\sigma_{\tau}(T)$来刻画Browder定理和Weyl定理.

定理2.1 设$T\in B(H)$, 则$T$有Browder定理当且仅当$\sigma_{D}(T)=\sigma_{\tau}(T)\cup int\sigma_{w}(T)$.

显然有$\sigma_{\tau}(T)\cup int\sigma_{w}(T)\subseteq\sigma_{D}(T)$, 下证$\sigma_{D}(T)\subseteq\sigma_{\tau}(T)\cup int\sigma_{w}(T)$.

设$\lambda\notin\sigma_{\tau}(T)\cup int\sigma_{w}(T)$, 则$\lambda\notin\sigma_{\tau}(T)$ 且$\lambda\in\rho_{w}(T)\cup\partial\sigma_{w}(T)$.

(1)~ 设$\lambda\notin\sigma_{\tau}(T)$且$\lambda\in\rho_{w}(T)$. 因为$T$有Browder 定理,所以$T-\lambda I$为Browder算子, 因而$\lambda\notin\sigma_{D}(T)$.

(2)~ 设$\lambda\notin\sigma_{\tau}(T)$且 $\lambda\in\partial\sigma_{w}(T)$. 对任意的$\lambda$的邻域 $B_{\delta}(\lambda)=\{\mu\in{\Bbb C}: |\mu-\lambda|<\delta\}$, 都存在$\lambda' \in B^{0}_{\delta}(\lambda)=\{\mu\in{\Bbb C}: 0<|\mu-\lambda|<\delta\}$使得$T-\lambda' I$为Weyl算子. 由$T$有Browder定理知$T-\lambda' I$为Browder算子, 于是$\lambda\in\partial\sigma(T)$. 又因为$\lambda\notin\sigma_{\tau}(T)$, 则$T-\lambda I$为Drazin可逆(参见文献[2,推论4.9]), 因此$\lambda\notin\sigma_{D}(T)$.

综上所述: $\sigma_{D}(T)=\sigma_{\tau}(T)\cup int\sigma_{w}(T)$.

反之,由$\sigma_{w}(T)\subseteq\sigma_{b}(T)$我们只需要证明 $\sigma_{b}(T)\subseteq\sigma_{w}(T)$.

设$\lambda\notin\sigma_{w}(T)$,即$T-\lambda I$为Weyl算子, 则$\lambda\notin\sigma_{\tau}(T)\cup int\sigma_{w}(T)=\sigma_{D}(T)$,于是$T-\lambda I$为Drazin可逆. 又由$T-\lambda I$为Weyl算子可知$T-\lambda I$为Browder算子, 即$\lambda\notin\sigma_{b}(T)$.

定理2.1给出了$T$有Browder定理的充要条件, 我们知道Browder定理是Weyl定理的前提,于是有

推论2.1$T$有Weyl定理当且仅当 $\sigma_{D}(T)=\sigma_{\tau}(T)\cup int\sigma_{w}(T)$且 $\sigma_{\tau}(T)\cap\pi_{00}(T)=\emptyset$.

设$T$有Weyl定理,则$T$有Browder定理, 由定理2.1知$\sigma_{D}(T)=\sigma_{\tau}(T)\cup int\sigma_{w}(T)$. 由于$\pi_{00}(T)\subseteq\sigma(T)\backslash\sigma_w(T) \subseteq\rho_\tau(T)$,于是$\sigma_{\tau}(T)\cap\pi_{00}(T) =\emptyset$.

反之,由定理2.1知当$\sigma_{D}(T)=\sigma_{\tau}(T)\cup int\sigma_{w}(T)$时$T$有Browder定理,即$\sigma(T)\backslash \sigma_{w}(T)\subseteq\pi_{00}(T)$,下证$\pi_{00}(T) \subseteq\sigma(T)\backslash\sigma_{w}(T)$.

设$\lambda\in\pi_{00}(T)$,则$0 综上所述,$T$有Weyl定理.

在定理2.1和推论2.1中,若$\sigma_\tau(T)=\emptyset$, 算子$T$是否满足Browder定理或者Weyl定理? 为此,先介绍一些预备知识.

单值延拓性质最初是由Dunford$^{[3,4]}$引入的, 该性质在局部谱理论和Fredholm理论中占据着很重要的地位. 算子$T\in B(H)$在$\lambda_0\in{\Bbb C}$有单值延拓性质, 是指对任意的$\lambda_0$的开邻域$U$,满足方程$(T-\lambda I)f(\lambda)=0$ ($\forall\lambda\in U$) 的唯一的解析函数$f: U\rightarrow H$为$U$上的零函数. 若任给$\lambda\in{\Bbb C}$,$T$ 在$\lambda$都有单值延拓性质,则称$T$有单值延拓性质. 显然, 当$T$为下有界算子时,$T$ 在$0$处有单值延拓性质; 并且当$int\sigma_p(T)=\emptyset$时,$T$有单值延拓性质, 其中$\sigma_p(T)$表示算子$T$的点谱. 许多重要的算子都满足单值延拓性质,例如亚正规算子和可分解算子等等. 关于单值延拓性质的更多的信息,参见文献[]等.

算子$T$的拟幂零部分定义为 $$H_0(T)=\{x\in H: \lim\limits_{n\rightarrow\infty}\|T^nx\|^{\frac{1}{n}}=0\}.$$ $T\in B(H)$称为是半正则的, 若$R(T)$闭且$N(T)\subseteq\bigcap\limits_{n=1}^\infty R(T^n)$. 由拓扑一致降标的定义可知,$T\in B(H)$为半正则算子当且仅当$T\in B(H)$有$n\geq 0$的拓扑一致降标. 令$\rho_{se}(T)=\{\lambda\in{\Bbb C}: T-\lambda I$为半正则算子$\}$. 下面我们先了解一下拓扑一致降标和单值延拓性质之间的关系, 由文献[2]中定理3.1以及文献[9]中引理3.1,可以证明下列结论.

引理 2.1 设$T\in B(H)$,则

(1)~ 若$T\in B(H)$有$n\geq 0$的拓扑一致降标, 则$T$在$0$处有单值延拓性质当且仅当$T$是下有界的;

(2)~ $T$为半正则的,则$\overline{H_0(T)}=\overline{N^\infty(T)}$, 其中$N^\infty(T)=\bigcup\limits_{n=1}^\infty N(T^n)$;

(3)~ 设$\Omega$为$\rho_{se}(T)$的连通分支,$\lambda_0\in \Omega$, 则$\overline{H_0(T-\lambda I)}=\overline{H_0(T-\lambda_0I)}$, 这就表明$\overline{H_0(T-\lambda I)}$在$\Omega$上为常值.

引理 2.2 设$T\in B(H)$. 若$\Omega$为$\rho_\tau(T)$的一个连通分支,则下列之一成立

(1)~ 任给$\lambda\in \Omega$,$T$在$\lambda$有单值延拓性质;

(2)~ 任给$\lambda\in \Omega$,$T$在$\lambda$无单值延拓性质.

设$\rho_{\tau_0}(T)=\{\lambda\in{\Bbb C}: T-\lambda I$有$n\geq 0$ 的拓扑一致降标$\}$, 并且设$\rho_\tau(T)=\rho_{\tau_0}(T)\cup\rho_{\tau_d}(T)$. 令$\sigma_{\tau}(T)={\Bbb C}\backslash \rho_\tau(T)$, 由文献[2]中定理3.2、引理4.2以及定理4.7可知$\rho_{\tau_0}(T) \subseteq{\Bbb C}$为开集,$\rho_{\tau_d}(T)$为孤立集. 我们知道孤立集为至多可数集,于是$\rho_{\tau_d}(T)$ 至多可数. 首先我们证明事实(i): 设$\Omega_0$为$\rho_{\tau_0}(T)$ 的一个连通分支,则下列之一成立

(1)~ 任给$\lambda\in \Omega_{0}$,$T$在$\lambda$有单值延拓性质;

(2)~ 任给$\lambda\in \Omega_{0}$,$T$在$\lambda$无单值延拓性质.

由于$T\in B(H)$为半正则的当且仅当$T\in B(H)$ 有$n\geq 0$的拓扑一致降标,于是$\rho_{\tau_0}(T)=\rho_{se}(T)$, 则$\Omega_0$为$\rho_{se}(T)$ 的一个连通分支. 我们断言: 若存在$\lambda_0\in\Omega_0$使得$T$在$\lambda_0$有单值延拓性质, 则任给$\lambda\in\Omega_0$,$T$在$\lambda$都有单值延拓性质.

事实上,由引理2.1,我们只需要证明任给$\lambda\in\Omega_0$, 都有$N(T-\lambda I)=\{0\}$. 由于$T-\lambda_0I$有$n\geq 0$ 的拓扑一致降标, 并且$T$在$\lambda_0$有单值延拓性质,于是$T-\lambda_0I$为下有界算 子(引理 2.1). 则$N((T-\lambda_0)^\infty)=\{0\}$且 $\overline{H_0(T-\lambda_0I)}=\overline{N(T-\lambda_0I)^\infty} =\{0\}$. 因此任给$\lambda\in\Omega_0$,$\overline{H_0(T-\lambda I)} =\overline{H_0(T-\lambda_0I)}=\{0\}$. 但是由于$T-\lambda I$ 为半正则的,则$\overline{H_0(T-\lambda I)} =\overline{N(T-\lambda I)^\infty}=\{0\}$. 于是$N(T-\lambda I)=\{0\}$.

这就证明了事实(i).

由于$\rho_{\tau}(T)=\rho_{\tau_0}(T)\cup\rho_{\tau_d}(T)$并且$\rho_{\tau_d}(T)$为${\Bbb C}$中的孤立集, 则存在$\rho_{\tau_0}(T)$中的连通分支$\Omega_1$使得$\Omega=\Omega_1\cup E$,其中$E\subseteq\rho_{\tau_d}(T)$至多可数. 再次,我们断言: 若存在$\lambda_0\in\Omega$使得$T$在$\lambda_0$有单值延拓性质, 则任给$\lambda\in\Omega$,$T$在$\lambda$有单值延拓性质. 下面 分两步来证明该断言:

(1)~ 存在$\lambda_0\in\Omega_1$使得$T$在$\lambda_0$有单值延拓性质.

从前面的证明我们可以看出,任给$\lambda\in\Omega_1$, $T$在$\lambda$都有单值延拓性质. 于是任给$\lambda\in\Omega_1$, $T-\lambda I$为下有界算子. 这就表明$E\subseteq \partial\sigma_a(T)$. 根据单值延拓性质的定义,任给$\lambda\in \Omega$, $T$在$\lambda$都有单值延拓性质.

(2)~ 存在$\lambda_0\in E$使得$T$在$\lambda_0$有单值延拓性质.

由于存在非负整数$d$,使得$T-\lambda_{0}I$有$n\geq d$的拓扑一致降标, 于是$\lambda_0\in \rho_a(T)\cup iso\sigma_a(T)$ (参见文献[4,定理3.2]). 但是由于$\rho_a(T)\subseteq\rho_{\tau_0}(T)$,则$\lambda_0\in iso\sigma_a(T)$. 于是存在$\epsilon>0$使得当$0<|\lambda-\lambda_0|<\epsilon$时, $T-\lambda I$为下有界算子. 因此存在$\lambda\in\Omega_1$使得$T$在$\lambda$有单值延拓性质. 由情况(1),再次我们证明了任给$\lambda\in\Omega$, $T$在$\lambda$都有单值延拓性质.

引理 2.3 设$T\in B(H)$. 若$\sigma_\tau(T)=\emptyset$, 则

(1)~ $\sigma(T)=\pi(T)$;

(2)~ 任给$K\in {\mathcal{K}}(H)$,$\sigma(T+K)=iso \sigma(T+K)$, $\rho_{SF}(T+K)=\rho_b(T+K)$.

(1)~ 由事实$\rho_\tau(T)={\Bbb C}$可知$\rho_\tau(T)$连通. 因为$\rho(T)\subseteq\rho_\tau(T)$且$T$在$\rho(T)$中的每一个$\lambda$处都有单值延拓性质, 由引理2.2,$T$有单值延拓性质. 根据文献[4]中 定理3.2,${\Bbb C}=\rho_a(T)\cup iso\sigma_a(T)$. 则$\sigma_a(T)=iso\sigma_a(T)$, 这意味着$\sigma_a(T)$为${\Bbb C}$中的孤立集, 于是$\sigma_a(T)$至多可数(参见文献[10,p28]), 因此$\rho_a(T)$为连通集. 由$\rho_a(T)\subseteq\rho_{SF}(T)$知${\Bbb C}=\rho_{SF}(T)\cup iso\sigma_a(T)$,因而$\rho_{SF}(T)$连通. 则$\sigma(T)=\sigma_{SF}(T)\cup\sigma_0(T)$, 其中$\sigma_0(T)=\sigma(T)\backslash\sigma_b(T)$. 这样就推出 $\rho_a(T)\subseteq\rho(T)\cup[\rho_a(T)\cap\sigma(T)]=\rho(T)\cup\sigma_0(T)$. 但是由于$\rho_a(T)\cap\sigma_0(T)=\emptyset$,则$\rho_a(T)=\rho(T)$. 于是${\Bbb C}=\rho(T)\cup iso\sigma_a(T)$, 即$\sigma(T)=iso\sigma_a(T)$. 由于$\sigma_\tau(T)=\emptyset$, 由文献[2]中定理4.9,$\sigma(T)=\pi(T)$.

(2)~ 由(1)的证明可知任给$K\in {\mathcal{K}}(H)$,${\Bbb C}=\rho_{SF}(T)\cup iso\sigma_a(T)=\rho_{SF}(T+K)\cup iso\sigma_a(T)$. 则$\rho_{SF}(T+K)$连通. 由于函数$\lambda\mapsto minind(T-\lambda I)$在$\rho_{SF}(T)$的每一个连通分支上除了至多可数集外是常值函数, 并且该可数集在$\rho_{SF}(T)$上没有极限点(参见文献[9,推论1.14]), 于是$\rho_{SF}(T+K)=\rho(T+K)\cup E=\rho_b(T+K)$,其中 $T-\lambda I$的极小指标$minind(T-\lambda I)$ 定义为$minind(T-\lambda I)=min\{n(T-\lambda I),d(T-\lambda I)\}$,$E\subseteq{\Bbb C}$ 为至多可数集(参见文献[9,推论1.14]). 因此${\Bbb C}=\rho(T+K)\cup E\cup iso\sigma_a(T)$,于是$\sigma(T+K)=E\cup iso\sigma_a(T)$. 这样我们就证明了$\sigma(T+K)$为孤立集, 因此$\sigma(T+K)=iso\sigma(T+K)$.

当$\sigma_{\tau}(T)=\emptyset$时,由引理2.3, $\sigma_D(T)=int\sigma_w(T)=\emptyset$ 且$\sigma_{\tau}(T)\cap\pi_{00}(T)=\emptyset$,于是由推论2.1可知

推论2.2若$\sigma_{\tau}(T)=\emptyset$, 则$T$有Weyl定理.

推论2.2给出了当$\sigma_{\tau}(T)=\emptyset$,则$T$有Weyl定理. 反之是否也成立? 事实上当$T$ 有Weyl定理时$\sigma_{\tau}(T)=\emptyset$不一定成立. 例如:$T_{1}(x_{1},x_{2},\cdots)=(0,x_{1},x_{2},\cdots)$, 容易得到$\sigma(T_{1})=\sigma_{w}(T_{1})=D$且 $\pi_{00}(T_{1})=\varnothing$, 所以有$\sigma(T_{1})\backslash\sigma_{w}(T_{1})=\pi_{00}(T_{1}) =\varnothing$, 但$\sigma_{\tau}(T_{1})=T\neq\varnothing$ (在这里D、T分别表示单位圆盘和单位圆周).

下面我们将给出算子$T$有Weyl定理与$\sigma_{\tau}(T)=\emptyset$ 的等价条件.

推论2.3 若$\sigma_{\tau}(T)=\emptyset$ 当且仅当$T$ 有Weyl定理且$[\sigma(T)\backslash\pi_{00}(T)]\cap\sigma_{D}(T) =\emptyset$.

$\sigma_{\tau}(T)=\emptyset$,由推论2.2知$T$ 有Weyl定理且由引理2.3知$[\sigma(T)\backslash\pi_{00}(T)] \cap\sigma_{D}(T)=\emptyset$.

反之,因为$T$有Weyl定理,所以${\Bbb C}=\rho(T)\cup[\sigma(T)\backslash\pi_{00}(T)]\cup\pi_{00}(T)$ 且 $\sigma(T)\backslash\sigma_{w}(T)=\pi_{00}(T)\subseteq\rho_{\tau}(T)$. 又因为$[\sigma(T)\backslash\pi_{00}(T)]\cap\sigma_{D}(T)=\emptyset$, 所以$\sigma(T)\backslash\pi_{00}(T)\subseteq\rho_{D}(T)\subseteq\rho_{\tau}(T)$. 显然$\rho(T)\subseteq\rho_{\tau}(T)$. 综上所述${\Bbb C}=\rho_{\tau}(T)$,即$\sigma_{\tau}(T)=\emptyset$.

下面在推论2.1的基础上,继续用算子的拓扑一致降标的性质来描述Weyl定理.

定理2.2 设$T\in B(H)$,则下列叙述等价

(1)~ $T$满足Weyl定理;

(2)~ $\sigma_{b}(T)=[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in\sigma(T): n(T-\lambda I)=\infty$或$n(T-\lambda I)=0\}$;

(3)~ $\sigma_{b}(T)\subseteq[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}: n(T-\lambda I)=\infty$或$n(T-\lambda I)=0\}$.

{\heiti 证}\quad $(1)\Longrightarrow(2)$. 显然$[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in\sigma(T): n(T-\lambda I)=\infty$或$n(T-\lambda I)=0\}\subseteq\sigma_{b}(T)$. 下证$\sigma_{b}(T)\subseteq[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in\sigma(T): n(T-\lambda I)=\infty$ 或$n(T-\lambda I)=0\}$.

对任意的$\lambda\notin[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in\sigma(T): n(T-\lambda I)=\infty$或$n(T-\lambda I)=0\}$, 有$\lambda\in\rho(T)\cup\{\lambda\in{\Bbb C}: 0<n(T-\lambda I)<\infty\}$. 当$\lambda\in\rho(T)$时,显然有 $\lambda\notin\sigma_{b}(T)$. 下面不妨设$\lambda\in\{\lambda\in{\Bbb C}: 0<n(T-\lambda I)<\infty\}$,分两种情况讨论:

$\langle1\rangle$~ $\lambda\notin\sigma_{\tau}(T)$,$\lambda\in \rho_{w}(T)\cup\partial\sigma_{w}(T)$ 且$\lambda\in\{\lambda\in{\Bbb C}: 0<n(T-\lambda I)<\infty\}$.

当$\lambda\in\rho_{w}(T)$时,由$T$满足Weyl定理可知 $T-\lambda I$是Browder算子,即$\lambda\notin\sigma_{b}(T)$.

当$\lambda\in\partial\sigma_{w}(T)$时, 对任意的$B_{\delta}(\lambda)$,都存在$\lambda_{0}\in B_{\delta}^0(\lambda)$使得$T-\lambda_0I$是Weyl算子. 由于$T$满足Weyl 定理,则$T-\lambda_0I$是Browder算子, 于是$\lambda\in\partial\sigma(T)$. 结合$\lambda\notin\sigma_{\tau}(T)$可知$T-\lambda I$是Drazin可逆(参见文献[2,推论4.9]),于是存在$p\in {\Bbb N}$使得$H=N[(T-\lambda I)^{p}]\oplus R[(T-\lambda I)^{p}]$. 又因为$0<n(T-\lambda I)<\infty$,所以$T-\lambda I$为Browder算子, 即$\lambda\notin\sigma_{b}(T)$.

$\langle2\rangle$~ $\lambda\notin acc\sigma(T)$ 且$\lambda\in\rho_{w}(T)\cup\partial\sigma_{w}(T)$且$\lambda\in\{\lambda\in{\Bbb C}: 0<n(T-\lambda I)<\infty\}$.

当$\lambda\notin acc\sigma(T)$,即$\lambda\in\rho(T)\cup iso\sigma(T)$. 当$\lambda\in\rho(T)$时显然有$\lambda\notin\sigma_{b}(T)$.

当$\lambda\in iso\sigma(T)$时,又因为$\lambda\in\{\lambda\in{\Bbb C}: 0<n(T-\lambda I)<\infty\}$,所以$\lambda\in \pi_{00}(T)$. 又因为$T$满足Weyl定理,所以$\lambda\notin\sigma_{b}(T)$.

$(2)\Longrightarrow(3)$. 显然成立.

$(3)\Longrightarrow(1)$. 由于$\{[\sigma(T)\backslash\sigma_{w}(T)]\cup\pi_{00}(T)\}\cap\{[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}: n(T-\lambda I)=\infty$ 或$n(T-\lambda I)=0\}\}=\emptyset$, 于是$\{[\sigma(T)\backslash\sigma_{w}(T)]\cup \pi_{00}(T)\}\cap\sigma_b(T)=\emptyset$. 这样就容易证明算子$T$满足Weyl定理.

称算子$T$为isoloid的,若$iso\sigma(T)\subseteq\sigma_{p}(T)$.

推论2.4$T$为isoloid的且$T$满足Weyl 定理当且仅当$\sigma_{b}(T)=[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}: n(T-\lambda I)=\infty\}$.

设$T$为isoloid的且$T$满足Weyl定理. 首先我们证明: $\{\lambda\in\sigma(T): n(T-\lambda I)=0\}\subseteq[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)$. 事实上当$T$为isoloid算子时有$\{\lambda\in\sigma(T): n(T-\lambda I)=0\}\subseteq[acc\sigma(T)\cup\sigma_{w}(T)]$. 对任意的$\lambda\in\{\lambda\in\sigma(T): n(T-\lambda I)=0\}$, 若$\lambda\notin int\sigma_{w}(T)$, 则有$\lambda\in\partial\sigma_{w}(T)$. 对$\lambda$的每一个邻域$B_{\delta}(\lambda)$,都存在$\lambda_0\in B^{0}_{\delta}(\lambda)$使得$T-\lambda_0I$是Weyl算子. 由$T$满足Weyl定理知$T-\lambda_0I$是Browder算子, 于是$\lambda\in\partial\sigma(T)$.

断言: $\lambda\in\sigma_{\tau}(T)$.

若$\lambda\notin\sigma_{\tau}(T)$, 由$\lambda\in\partial\sigma(T)$知$T-\lambda I$ 是Drazin 可逆 (参见文献[2,推论4.9]). 但是由于$\lambda\in\{\lambda\in{\Bbb C}: n(T-\lambda I)=0\}$,则$T-\lambda I$是可逆,矛盾. 于是$\lambda\in\sigma_{\tau}(T)$.

综上所述,$\{\lambda\in\sigma(T): n(T-\lambda I)=0\}\subseteq[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)$.

因为$T$满足Weyl定理,由定理2.2知$\sigma_{b}(T)= [(\sigma_{\tau}(T)\cap acc\sigma(T))\cup int\sigma_{w}(T)\cup\{\lambda\in\sigma(T): n(T-\lambda I)=\infty$ 或$n(T-\lambda I)=0\}]=[(\sigma_{\tau}(T)\cap acc\sigma(T))\cup int\sigma_{w}(T)\cup\{\lambda\in\sigma(T): n(T-\lambda \\ I)=0\}\cup\{\lambda\in{\Bbb C}: n(T-\lambda I)=\infty\}]=[(\sigma_{\tau}(T)\cap acc\sigma(T))\cup int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}: n(T-\lambda I)=\infty\}]$.

反之,若$\sigma_{b}(T)=[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}: n(T-\lambda I)=\infty\}$,则由定理2.2知$T$有Weyl 定理. 下证$T$为isoloid算子.

任给$\lambda\in iso\sigma(T)$,若$n(T-\lambda I)=0$, 则由$\lambda\notin [\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}: n(T-\lambda I)=\infty\}=\sigma_{b}(T)$知$T-\lambda I$为Browder算子. 又由于$n(T-\lambda I)=0$,则$T-\lambda I$可逆,这与$\lambda\in iso\sigma(T)$矛盾. 于是$n(T-\lambda I)>0$, 即$\lambda\in\sigma_{p}(T)$,因而$T$为isoloid的算子.

下面来研究Browder定理在紧算子下的摄动,先考虑微小摄动.

定理2.3 设$T\in B(H)$,则下列叙述等价

(1)~ 存在$\epsilon>0$使得当$K\in K(H)$且$\|K\|<\epsilon$时, $T+K$有Browder定理;

(2)~ $T$有Browder定理且$\rho_{\tau}(T)$中至多 有有限个包含$\rho_{w}(T)$的连通分支.

$(1)\Rightarrow(2)$. 只需证$\rho_{\tau}(T)$ 中至多有有限个包含$\rho_{w}(T)$ 的连通分支. 若不然, 假设$\{\Omega_{n}\}_{n=1}^{\infty}$为$\rho_{\tau}(T)$ 中一列有界的连通分支. 显然$\sum\limits_{n=1}^{\infty}m(\Omega_{n})\leq m(\widehat{\sigma(T)})<\infty$, 其中$\widehat{\sigma(T)}$表示$\sigma(T)$的闭凸包, $m(\cdot)$表示复平面上的勒贝格测度. 则对$\epsilon>0$,存在$k\in N$使得当$n>k$时有$m(\Omega_{n})<\frac{\pi\epsilon^{2}}{4}$. 因为$\rho_{\tau}(T)$中有无限个包含$\rho_{w}(T)$的连通分支, 则一定存在一个$n_{0}>k$使得$\Omega_{n_{0}}$为 $\rho_{\tau}(T)$中的一个有界连通分支且$\rho_{w}(T) \cap\Omega_{n_{0}}\neq\emptyset$. 显然$\partial\Omega_{n_{0}}\subseteq\sigma_{SF}(T)$, 于是存在$K_{1}\in K(H)$满足$\parallel K_{1}\parallel<\frac{\varepsilon}{4}$且 $T+K_{1}=\left( \begin{array}{cc} N ~& C \\ 0 ~& A \\ \end{array} \right) $,其中$N$为正规算子且$\sigma(N)=\sigma_{SF}(N)=\partial\Omega_{n_{0}}$ (参见文献[11,引理4.1]). 对于算子$N$,存在紧算子$K_{2}' $使得$\| K_{2}' \|<\frac{3\varepsilon}{4}$ 且$\sigma(N+K_{2}' )=\overline{\Omega_{n_{0}}}$ (参见文献[11,引理4.3]). 对任意的$\lambda\in\Omega_{n_{0}}$, $N-\lambda I$可逆,则$N+K_{2}' -\lambda I$为Weyl算子, 即$\Omega_{n_{0}}\subseteq\sigma(N+K_{2}' )\backslash\sigma_{w}(N+K_{2}' )$. 令$K_{2}=\left( \begin{array}{cc} K_{2}' ~ & 0 \\ 0 ~& 0 \\ \end{array} \right) $且$K=K_{1}+K_{2}$,则$\parallel K\parallel\leq\varepsilon$且$K=\left( \begin{array}{cc} N+K_{2}' ~& C \\ 0~ & A \\ \end{array} \right)\in K(H) $. 因为$\rho_{w}(T)\cap\Omega_{n_{0}}\neq\emptyset$, 所以存在$\lambda' \in\Omega_{n_{0}}$使得$T-\lambda' I$为Weyl算子, 于是$T+K-\lambda' I$为Weyl算子. 由于$T+K$满足Browder定理, 则$T+K-\lambda' I$为Browder算子, 因此存在$\lambda{''}\in\Omega_{n_{0}}$使得$T+K-\lambda{''}I$ 可逆. 又因为 \begin{eqnarray*} T+K-\lambda {''}I&=&\left( \begin{array}{cc} N+K_{2}' -\lambda{''} I~~ & C \\ 0~~ & A-\lambda{''} I \\ \end{array} \right)\\ &=&\left( \begin{array}{cc} I ~~& 0 \\ 0~~ & A-\lambda{''} I \\ \end{array} \right)\left( \begin{array}{cc} I~~ & C \\ 0 ~~& I \\ \end{array} \right)\left( \begin{array}{cc} N+K_{2}' -\lambda {''}I ~~& 0 \\ 0~~ & I \\ \end{array} \right), \end{eqnarray*} 所以$N+K_{2}' -\lambda'' I$为下有界算子. 又由于$N+K_{2}' -\lambda'' I$ 为Weyl算子, 因而$N+K_{2}' -\lambda'' I$可逆, 这与$\sigma(N+K_{2}' )=\overline{\Omega_{n_{0}}}$ 矛盾. $(2)\Rightarrow(1)$. 设$\{\Omega_{n}\}_{n=1}^{N}$为$\rho_{\tau}(T)$中N个连通分支满足 $\rho_{w}(T)\subseteq\bigcup\limits_{n=1}^N\Omega_{n}$ 且 $\rho_{w}(T)\cap\Omega_{i}\neq\emptyset$,$i=1,2,\cdots,N$. 则对任意的$i\in\{1,\cdots,N\}$, 都存在$\lambda_{i}\in\Omega_{i}$使得$T+K-\lambda_{i}I$ 为Weyl 算子, 所以$T-\lambda_{i}I$为Weyl算子. 由$T$满足Browder定理知$T-\lambda_iI$为Browder 算子, 于是存在$\lambda_{i}' \in\Omega_{i}$使得$T-\lambda_{i}' I$可逆. 又因为$\Omega_{i}$连通, 则$T$在$\bigcup\limits_{n=1}^N\Omega_{n}$上有SVEP (引理2.2), 于是$\Omega_{i}\subseteq\rho_{a}(T)\cup iso\sigma_{a}(T)\subseteq\rho_{SF}(T)\cup iso\sigma_{a}(T)$. 因而对每一个$i\in\{1,2,\cdots,N\}$, 都存在$\rho_{SF}(T)$的一个分支$\Omega_{i_{0}}$使得$\Omega_{i}=\Omega_{i_{0}}\cup E_{i}$,其中$E_{i}$为至多可数集,则$\Omega_{i_{0}}$连通,$i=1,2, \cdots,N$. 又因为$\partial\Omega_{i_{0}}\subseteq\partial\Omega_{i}\subseteq\sigma_{SF}(T)$, 所以$\Omega_{i_{0}}$为$\rho_{SF}(T)$的一个连通分支,$i=1,2,\cdots, N$,进而$\Omega_{i_{0}}$ 为$\rho_{SF}(T+K)$的一个连通分支. 由于对任意的$i\in\{1,2,\cdots,N\}$,$T-\lambda_{i}' I$可逆, 则存在$\varepsilon>0$使得当$K\in K(H)$且$\parallel K\parallel<\varepsilon$时有$T+K-\lambda_{i}I$可逆,由文献[9]中推论1.14 可知$\Omega_i\subseteq\rho(T+K)\cup E_{i}' $, 其中$E_{i}' $为至多可数集且$E_{i}' $在$\Omega_{i}$中无极限点, 则有 $\rho_{w}(T+K)\subseteq\bigcup\limits_{n=1}^N\Omega_{n}\subseteq\rho(T+K)\cup(\bigcup\limits_{i=1}^N E_{i}' )$, 于是$\sigma(T+K)\backslash\sigma_{w}(T+K)\subseteq(\bigcup\limits_{i=1}^N E_{i}' )$,从而$T+K$有Browder定理.

对于Browder定理的所有的紧摄动,有如下结论

定理2.4 对任意的$K\in K(H)$,$T+K$都满足Browder 定理当且仅当$\rho_\tau(T)$中仅有一个包含$\rho_{w}(T)$的连通分支.

设对任意的$K\in K(H)$,$T+K$都满足Browder定理. 若``$\rho_{\tau}(T)$中仅有一个包含$\rho_{w}(T)$的连通分支"不成立, 则存在$\Omega_{0}$ 为$\rho_{\tau}(T)$ 中的一个有界连通分支满足$\Omega_{0}\cap\rho_{w}(T)\neq\emptyset$. 由于$\Omega_{0}$ 连通且$\partial\Omega_{0}\subseteq\sigma_{\tau}(T)\subseteq\sigma_{SF}(T)$, 于是存在$K_{1}\in K(H)$使得 $$T+K_{1}=\left( \begin{array}{cc} N ~~& C\\ 0 ~~& A \end{array} \right) , $$ 其中$N$为正规算子且$\sigma(N)=\sigma_{SF}(N)=\partial\Omega_{0}$ (参见文献[11,引理4.1]). 对于算子$N$存在紧算子$K_{2}' $使得$\sigma(N+K_{2}' )= \overline{\Omega_{0}}$ (参见文献[11,引理4.3]). 对任意的$\lambda\in\Omega_{0}$,由$N-\lambda I$可逆知$N+K_{2}' -\lambda I$为Weyl算子, 即$\Omega_{0}\subseteq\sigma(N+K_{2}' ) \backslash\sigma_{w}(N+K_{2}' )$. 令 $$K_{2}=\left( \begin{array}{cc} K_{2}' ~~& 0 \\ 0~~ & 0 \\ \end{array} \right) $$ 且$K=K_{1}+K_{2}$,则有 $$K=\left( \begin{array}{cc} N+K_{2}' ~~ & C \\ 0 ~~& A \\ \end{array} \right)\in K(H) . $$ 由于$\rho_{w}(T)\cap\Omega_{0}\neq\emptyset$, 则一定存在$\lambda' \in\Omega_{0}$使得$T-\lambda' I$为Weyl算子, 于是$T+K-\lambda' I$ 为Weyl算子. 因为$T+K$有Browder定理, 则$T+K-\lambda' I$为Browder算子,类似于定理2.3 的证明,得到矛盾.

反之,设$\Omega$为$\rho_{\tau}(T)$中仅包含$\rho_{w}(T)$的连通分支. 由$\rho(T)\subseteq\rho_{w}(T)\subseteq\Omega$知$T$在$\Omega$上有SVEP(引理2.2), 则$\Omega\subseteq\rho_{a}(T)\cup iso\sigma_{a}(T)\subseteq\rho_{SF}(T)\cup iso\sigma_{a}(T)$, 于是存在$\Omega_0\subseteq\rho_{SF}(T)$为一个分支使得$\Omega=\Omega_0\cup E$,其中$E$为至多可数集,$\Omega_{0}$连通. 可以证明$\Omega_0$ 为$\rho_{SF}(T)$的一个连通分支. 由于$\rho_w(T)\subseteq\Omega$, 则$\rho_{w}(T)\subseteq\Omega_{0}$,因而$\rho_{w}(T)$连通, 所以对任意的$K\in K(H)$ 都有$\rho_{w}(T+K)$连通. 又由于$\rho(T+K)\subseteq\rho_{w}(T+K)$, 于是$\rho_{w}(T+K)=\rho(T+K)\cup E' $ (参见文献[13,推论1.14]), 其中$E' $为至多可数集且$E' $ 在$\rho_{w}(T+K)$中无极限点. 所以$\sigma(T+K)\backslash\sigma_{w}(T+K)\subseteq E' $. 因此对任意的$K\in K(H)$,$T+K$都有Browder定理.

由引理2.3,定理2.4可知

推论2.5 $\sigma_{\tau}(T)=\emptyset$, 则对任意的$K\in K(H),T+K$有Browder 定理.

事实上,$\sigma_{\tau}(T)=\emptyset$当且仅当$T$为代数算子, 于是对代数算子$T$,任给紧算子$K$,$T+K$都满足Browder定理.

参考文献
[1] Shi Weijuan, Cao Xiaohong. Judgement for the stability of Weyl's theorem. Journal of Shandong University, 2012, 47(4): 24-27
[2] Grabiner S. Uniform ascent and descent of bounded operators. Journal of the Mathematical Society of Japan, 1982, 34(2): 317-337
[3] Dunford N. Spectral theory II, Resolutions of the identity. Pacific J Math, 1952, 2(4): 559-614
[4] Dunford N. Spectral operators. Pacific J Math, 1954, 4(3): 321-354
[5] Zhu Sen, Li Chunguang. SVEP and compact perturbations. Journal of Mathematical Analysis and Applications, 2011, 380: 69-75
[6] Aiena P. Fredholm and Local Spectral Theory, with Applications to Multipliers. Dordrecht: Kluwer Academic Publishers, 2004
[7] Laursen K B, Neumann M M. An Introduction to Local Spectral Theorey. London Math Soc Monogr, New Ser, Vol 20. Oxford: Clarendon Press, 2000
[8] Finch J K. The single valued extension property on a Banach space. Pacific J Math, 1975, 58: 61-69
[9] Herrero D A. Approximation of Hilbert Space Operators, Pitman Res Notes Math Ser, Vol 224. Harlow: Longman Scientific and Technical, 1989
[10] Jiang Z J, Wu Z Q, Ji Y Q. Real Function Theory. 3nd ed., Beijing: Higher Education Press, 2007
[11] Ji Youqing. Quasitriangular+small compact=strongly irreducible. Transaction of the American Mathematical Society, 1999, 351(11): 4657-4673