2 拓扑一致降标及Weyl定理
对T∈B(H),任给n∈N,
定义R(Tn)上的新范数‖⋅‖n: 对y\in R(T^n),
\|y\|_n=inf\{\|x\|: y=T^nx\}. 由
\|\cdot\|_n诱导的拓扑成为R(T^n)上的算子值域拓扑.
如果存在d\in{\Bbb N},
使得R(T)+N(T^d)=R(T)+N(T^\infty)并且R(T^{d+1})按照
R(T^d)上的算子值域拓扑闭,称T对n\geq d有拓扑一致降标. 令
\rho_\tau(T)=\{\lambda\in{\Bbb C}:
\mbox{存在 $d\in{\Bbb N},$
使得当$n\geq d$ 时,$ T-\lambda
I$ 有拓扑一致降标}\},
\rho_{\tau_d}(T)=\{\lambda\in{\Bbb
C}: \mbox{存在 $d\in{\Bbb N^{+}}$,使得当 $n\geq
d$ 时,$T-\lambda I$ 有拓扑一致降标}\},
且令\sigma_{\tau}(T)={\Bbb C}\backslash \rho_\tau(T). 由文献[2]中定理
3.2、引理4.2以及定理4.7可知\rho_{\tau}(T)\subseteq{\Bbb C}为开集,
因而\sigma_{\tau}(T)\subseteq{\Bbb C}为闭集. 容易看出
\rho_{SF}(T)\subseteq\rho_\tau(T). 关于拓扑一致降标的更多的性质,
参见文献[2].
下面我们用\sigma_{\tau}(T)来刻画Browder定理和Weyl定理.
定理2.1 设T\in B(H),
则T有Browder定理当且仅当\sigma_{D}(T)=\sigma_{\tau}(T)\cup
int\sigma_{w}(T).
证 显然有\sigma_{\tau}(T)\cup
int\sigma_{w}(T)\subseteq\sigma_{D}(T),
下证\sigma_{D}(T)\subseteq\sigma_{\tau}(T)\cup int\sigma_{w}(T).
设\lambda\notin\sigma_{\tau}(T)\cup int\sigma_{w}(T),
则\lambda\notin\sigma_{\tau}(T)
且\lambda\in\rho_{w}(T)\cup\partial\sigma_{w}(T).
(1)~ 设\lambda\notin\sigma_{\tau}(T)且\lambda\in\rho_{w}(T).
因为T有Browder 定理,所以T-\lambda I为Browder算子,
因而\lambda\notin\sigma_{D}(T).
(2)~ 设\lambda\notin\sigma_{\tau}(T)且
\lambda\in\partial\sigma_{w}(T). 对任意的\lambda的邻域
B_{\delta}(\lambda)=\{\mu\in{\Bbb C}: |\mu-\lambda|<\delta\},
都存在\lambda' \in B^{0}_{\delta}(\lambda)=\{\mu\in{\Bbb C}:
0<|\mu-\lambda|<\delta\}使得T-\lambda' I为Weyl算子.
由T有Browder定理知T-\lambda' I为Browder算子,
于是\lambda\in\partial\sigma(T).
又因为\lambda\notin\sigma_{\tau}(T),
则T-\lambda I为Drazin可逆(参见文献[2,推论4.9]),
因此\lambda\notin\sigma_{D}(T).
综上所述: \sigma_{D}(T)=\sigma_{\tau}(T)\cup int\sigma_{w}(T).
反之,由\sigma_{w}(T)\subseteq\sigma_{b}(T)我们只需要证明
\sigma_{b}(T)\subseteq\sigma_{w}(T).
设\lambda\notin\sigma_{w}(T),即T-\lambda I为Weyl算子,
则\lambda\notin\sigma_{\tau}(T)\cup
int\sigma_{w}(T)=\sigma_{D}(T),于是T-\lambda I为Drazin可逆.
又由T-\lambda I为Weyl算子可知T-\lambda I为Browder算子,
即\lambda\notin\sigma_{b}(T).
定理2.1给出了T有Browder定理的充要条件,
我们知道Browder定理是Weyl定理的前提,于是有
推论2.1T有Weyl定理当且仅当
\sigma_{D}(T)=\sigma_{\tau}(T)\cup int\sigma_{w}(T)且
\sigma_{\tau}(T)\cap\pi_{00}(T)=\emptyset.
证 设T有Weyl定理,则T有Browder定理,
由定理2.1知\sigma_{D}(T)=\sigma_{\tau}(T)\cup int\sigma_{w}(T).
由于\pi_{00}(T)\subseteq\sigma(T)\backslash\sigma_w(T)
\subseteq\rho_\tau(T),于是\sigma_{\tau}(T)\cap\pi_{00}(T)
=\emptyset.
反之,由定理2.1知当\sigma_{D}(T)=\sigma_{\tau}(T)\cup
int\sigma_{w}(T)时T有Browder定理,即\sigma(T)\backslash
\sigma_{w}(T)\subseteq\pi_{00}(T),下证\pi_{00}(T)
\subseteq\sigma(T)\backslash\sigma_{w}(T).
设\lambda\in\pi_{00}(T),则$0
综上所述,T有Weyl定理.
在定理2.1和推论2.1中,若\sigma_\tau(T)=\emptyset,
算子T是否满足Browder定理或者Weyl定理? 为此,先介绍一些预备知识.
单值延拓性质最初是由Dunford$^{[3,4]}引入的,
该性质在局部谱理论和Fredholm理论中占据着很重要的地位. 算子T\in
B(H)在\lambda_0\in{\Bbb C}有单值延拓性质,
是指对任意的\lambda_0的开邻域U,满足方程(T-\lambda
I)f(\lambda)=0 (\forall\lambda\in U) 的唯一的解析函数f:
U\rightarrow H为U上的零函数. 若任给\lambda\in{\Bbb C},T
在\lambda都有单值延拓性质,则称T有单值延拓性质. 显然,
当T为下有界算子时,T 在0处有单值延拓性质;
并且当int\sigma_p(T)=\emptyset时,T有单值延拓性质,
其中\sigma_p(T)表示算子T$的点谱.
许多重要的算子都满足单值延拓性质,例如亚正规算子和可分解算子等等.
关于单值延拓性质的更多的信息,参见文献[]等.
算子T的拟幂零部分定义为
H_0(T)=\{x\in H:
\lim\limits_{n\rightarrow\infty}\|T^nx\|^{\frac{1}{n}}=0\}.
T\in
B(H)称为是半正则的,
若R(T)闭且N(T)\subseteq\bigcap\limits_{n=1}^\infty R(T^n).
由拓扑一致降标的定义可知,T\in B(H)为半正则算子当且仅当T\in
B(H)有n\geq 0的拓扑一致降标. 令\rho_{se}(T)=\{\lambda\in{\Bbb
C}: T-\lambda I为半正则算子\}.
下面我们先了解一下拓扑一致降标和单值延拓性质之间的关系,
由文献[2]中定理3.1以及文献[9]中引理3.1,可以证明下列结论.
引理 2.1 设T\in B(H),则
(1)~ 若T\in B(H)有n\geq 0的拓扑一致降标,
则T在0处有单值延拓性质当且仅当T是下有界的;
(2)~ T为半正则的,则\overline{H_0(T)}=\overline{N^\infty(T)},
其中N^\infty(T)=\bigcup\limits_{n=1}^\infty N(T^n);
(3)~ 设\Omega为\rho_{se}(T)的连通分支,\lambda_0\in \Omega,
则\overline{H_0(T-\lambda I)}=\overline{H_0(T-\lambda_0I)},
这就表明\overline{H_0(T-\lambda I)}在\Omega上为常值.
引理 2.2 设T\in B(H).
若\Omega为\rho_\tau(T)的一个连通分支,则下列之一成立
(1)~ 任给\lambda\in \Omega,T在\lambda有单值延拓性质;
(2)~ 任给\lambda\in \Omega,T在\lambda无单值延拓性质.
证设\rho_{\tau_0}(T)=\{\lambda\in{\Bbb C}:
T-\lambda I有n\geq 0 的拓扑一致降标\},
并且设\rho_\tau(T)=\rho_{\tau_0}(T)\cup\rho_{\tau_d}(T).
令\sigma_{\tau}(T)={\Bbb C}\backslash \rho_\tau(T),
由文献[2]中定理3.2、引理4.2以及定理4.7可知\rho_{\tau_0}(T)
\subseteq{\Bbb C}为开集,\rho_{\tau_d}(T)为孤立集.
我们知道孤立集为至多可数集,于是\rho_{\tau_d}(T) 至多可数.
首先我们证明事实(i): 设\Omega_0为\rho_{\tau_0}(T)
的一个连通分支,则下列之一成立
(1)~ 任给\lambda\in \Omega_{0},T在\lambda有单值延拓性质;
(2)~ 任给\lambda\in \Omega_{0},T在\lambda无单值延拓性质.
由于T\in B(H)为半正则的当且仅当T\in B(H) 有n\geq
0的拓扑一致降标,于是\rho_{\tau_0}(T)=\rho_{se}(T),
则\Omega_0为\rho_{se}(T)
的一个连通分支. 我们断言:
若存在\lambda_0\in\Omega_0使得T在\lambda_0有单值延拓性质,
则任给\lambda\in\Omega_0,T在\lambda都有单值延拓性质.
事实上,由引理2.1,我们只需要证明任给\lambda\in\Omega_0,
都有N(T-\lambda I)=\{0\}. 由于T-\lambda_0I有n\geq 0
的拓扑一致降标,
并且T在\lambda_0有单值延拓性质,于是T-\lambda_0I为下有界算
子(引理 2.1). 则N((T-\lambda_0)^\infty)=\{0\}且
\overline{H_0(T-\lambda_0I)}=\overline{N(T-\lambda_0I)^\infty}
=\{0\}. 因此任给\lambda\in\Omega_0,\overline{H_0(T-\lambda I)}
=\overline{H_0(T-\lambda_0I)}=\{0\}. 但是由于T-\lambda I
为半正则的,则\overline{H_0(T-\lambda I)}
=\overline{N(T-\lambda I)^\infty}=\{0\}.
于是N(T-\lambda I)=\{0\}.
这就证明了事实(i).
由于\rho_{\tau}(T)=\rho_{\tau_0}(T)\cup\rho_{\tau_d}(T)并且\rho_{\tau_d}(T)为{\Bbb
C}中的孤立集,
则存在\rho_{\tau_0}(T)中的连通分支\Omega_1使得\Omega=\Omega_1\cup
E,其中E\subseteq\rho_{\tau_d}(T)至多可数. 再次,我们断言:
若存在\lambda_0\in\Omega使得T在\lambda_0有单值延拓性质,
则任给\lambda\in\Omega,T在\lambda有单值延拓性质. 下面
分两步来证明该断言:
(1)~ 存在\lambda_0\in\Omega_1使得T在\lambda_0有单值延拓性质.
从前面的证明我们可以看出,任给\lambda\in\Omega_1,
T在\lambda都有单值延拓性质. 于是任给\lambda\in\Omega_1,
T-\lambda I为下有界算子. 这就表明E\subseteq \partial\sigma_a(T).
根据单值延拓性质的定义,任给\lambda\in \Omega,
T在\lambda都有单值延拓性质.
(2)~ 存在\lambda_0\in E使得T在\lambda_0有单值延拓性质.
由于存在非负整数d,使得T-\lambda_{0}I有n\geq d的拓扑一致降标,
于是\lambda_0\in \rho_a(T)\cup iso\sigma_a(T) (参见文献[4,定理3.2]).
但是由于\rho_a(T)\subseteq\rho_{\tau_0}(T),则\lambda_0\in
iso\sigma_a(T).
于是存在\epsilon>0使得当0<|\lambda-\lambda_0|<\epsilon时,
T-\lambda I为下有界算子.
因此存在\lambda\in\Omega_1使得T在\lambda有单值延拓性质.
由情况(1),再次我们证明了任给\lambda\in\Omega,
T在\lambda都有单值延拓性质.
引理 2.3 设T\in B(H). 若\sigma_\tau(T)=\emptyset,
则
(1)~ \sigma(T)=\pi(T);
(2)~ 任给K\in {\mathcal{K}}(H),\sigma(T+K)=iso \sigma(T+K),
\rho_{SF}(T+K)=\rho_b(T+K).
证 (1)~ 由事实\rho_\tau(T)={\Bbb
C}可知\rho_\tau(T)连通.
因为\rho(T)\subseteq\rho_\tau(T)且T在\rho(T)中的每一个\lambda处都有单值延拓性质,
由引理2.2,T有单值延拓性质. 根据文献[4]中 定理3.2,{\Bbb
C}=\rho_a(T)\cup iso\sigma_a(T). 则\sigma_a(T)=iso\sigma_a(T),
这意味着\sigma_a(T)为{\Bbb C}中的孤立集,
于是\sigma_a(T)至多可数(参见文献[10,p28]),
因此\rho_a(T)为连通集.
由\rho_a(T)\subseteq\rho_{SF}(T)知{\Bbb C}=\rho_{SF}(T)\cup
iso\sigma_a(T),因而\rho_{SF}(T)连通.
则\sigma(T)=\sigma_{SF}(T)\cup\sigma_0(T),
其中\sigma_0(T)=\sigma(T)\backslash\sigma_b(T). 这样就推出
\rho_a(T)\subseteq\rho(T)\cup[\rho_a(T)\cap\sigma(T)]=\rho(T)\cup\sigma_0(T).
但是由于\rho_a(T)\cap\sigma_0(T)=\emptyset,则\rho_a(T)=\rho(T).
于是{\Bbb C}=\rho(T)\cup iso\sigma_a(T),
即\sigma(T)=iso\sigma_a(T). 由于\sigma_\tau(T)=\emptyset,
由文献[2]中定理4.9,\sigma(T)=\pi(T).
(2)~ 由(1)的证明可知任给K\in {\mathcal{K}}(H),{\Bbb
C}=\rho_{SF}(T)\cup iso\sigma_a(T)=\rho_{SF}(T+K)\cup
iso\sigma_a(T). 则\rho_{SF}(T+K)连通. 由于函数\lambda\mapsto
minind(T-\lambda
I)在\rho_{SF}(T)的每一个连通分支上除了至多可数集外是常值函数,
并且该可数集在\rho_{SF}(T)上没有极限点(参见文献[9,推论1.14]),
于是\rho_{SF}(T+K)=\rho(T+K)\cup E=\rho_b(T+K),其中 T-\lambda
I的极小指标minind(T-\lambda I) 定义为minind(T-\lambda
I)=min\{n(T-\lambda I),d(T-\lambda I)\},E\subseteq{\Bbb C}
为至多可数集(参见文献[9,推论1.14]). 因此{\Bbb C}=\rho(T+K)\cup E\cup
iso\sigma_a(T),于是\sigma(T+K)=E\cup iso\sigma_a(T).
这样我们就证明了\sigma(T+K)为孤立集,
因此\sigma(T+K)=iso\sigma(T+K).
当\sigma_{\tau}(T)=\emptyset时,由引理2.3,
\sigma_D(T)=int\sigma_w(T)=\emptyset
且\sigma_{\tau}(T)\cap\pi_{00}(T)=\emptyset,于是由推论2.1可知
推论2.2若\sigma_{\tau}(T)=\emptyset,
则T有Weyl定理.
推论2.2给出了当\sigma_{\tau}(T)=\emptyset,则T有Weyl定理.
反之是否也成立? 事实上当T
有Weyl定理时\sigma_{\tau}(T)=\emptyset不一定成立.
例如:T_{1}(x_{1},x_{2},\cdots)=(0,x_{1},x_{2},\cdots),
容易得到\sigma(T_{1})=\sigma_{w}(T_{1})=D且
\pi_{00}(T_{1})=\varnothing,
所以有\sigma(T_{1})\backslash\sigma_{w}(T_{1})=\pi_{00}(T_{1})
=\varnothing,
但\sigma_{\tau}(T_{1})=T\neq\varnothing
(在这里D、T分别表示单位圆盘和单位圆周).
下面我们将给出算子T有Weyl定理与\sigma_{\tau}(T)=\emptyset
的等价条件.
推论2.3 若\sigma_{\tau}(T)=\emptyset
当且仅当T
有Weyl定理且[\sigma(T)\backslash\pi_{00}(T)]\cap\sigma_{D}(T)
=\emptyset.
证 \sigma_{\tau}(T)=\emptyset,由推论2.2知T
有Weyl定理且由引理2.3知[\sigma(T)\backslash\pi_{00}(T)]
\cap\sigma_{D}(T)=\emptyset.
反之,因为T有Weyl定理,所以{\Bbb
C}=\rho(T)\cup[\sigma(T)\backslash\pi_{00}(T)]\cup\pi_{00}(T) 且
\sigma(T)\backslash\sigma_{w}(T)=\pi_{00}(T)\subseteq\rho_{\tau}(T).
又因为[\sigma(T)\backslash\pi_{00}(T)]\cap\sigma_{D}(T)=\emptyset,
所以\sigma(T)\backslash\pi_{00}(T)\subseteq\rho_{D}(T)\subseteq\rho_{\tau}(T).
显然\rho(T)\subseteq\rho_{\tau}(T). 综上所述{\Bbb
C}=\rho_{\tau}(T),即\sigma_{\tau}(T)=\emptyset.
下面在推论2.1的基础上,继续用算子的拓扑一致降标的性质来描述Weyl定理.
定理2.2 设T\in B(H),则下列叙述等价
(1)~ T满足Weyl定理;
(2)~ \sigma_{b}(T)=[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in\sigma(T): n(T-\lambda I)=\infty或n(T-\lambda I)=0\};
(3)~ \sigma_{b}(T)\subseteq[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}: n(T-\lambda I)=\infty或n(T-\lambda I)=0\}.
{\heiti 证}\quad (1)\Longrightarrow(2). 显然[\sigma_{\tau}(T)\cap
acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in\sigma(T):
n(T-\lambda I)=\infty或n(T-\lambda I)=0\}\subseteq\sigma_{b}(T).
下证\sigma_{b}(T)\subseteq[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup
int\sigma_{w}(T)\cup\{\lambda\in\sigma(T): n(T-\lambda I)=\infty
或n(T-\lambda I)=0\}.
对任意的\lambda\notin[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup
int\sigma_{w}(T)\cup\{\lambda\in\sigma(T): n(T-\lambda
I)=\infty或n(T-\lambda I)=0\},
有\lambda\in\rho(T)\cup\{\lambda\in{\Bbb C}: 0<n(T-\lambda
I)<\infty\}. 当\lambda\in\rho(T)时,显然有
\lambda\notin\sigma_{b}(T). 下面不妨设\lambda\in\{\lambda\in{\Bbb
C}: 0<n(T-\lambda I)<\infty\},分两种情况讨论:
\langle1\rangle~ \lambda\notin\sigma_{\tau}(T),\lambda\in
\rho_{w}(T)\cup\partial\sigma_{w}(T) 且\lambda\in\{\lambda\in{\Bbb
C}: 0<n(T-\lambda I)<\infty\}.
当\lambda\in\rho_{w}(T)时,由T满足Weyl定理可知 T-\lambda
I是Browder算子,即\lambda\notin\sigma_{b}(T).
当\lambda\in\partial\sigma_{w}(T)时,
对任意的B_{\delta}(\lambda),都存在\lambda_{0}\in
B_{\delta}^0(\lambda)使得T-\lambda_0I是Weyl算子. 由于T满足Weyl
定理,则T-\lambda_0I是Browder算子,
于是\lambda\in\partial\sigma(T).
结合\lambda\notin\sigma_{\tau}(T)可知T-\lambda
I是Drazin可逆(参见文献[2,推论4.9]),于是存在p\in {\Bbb
N}使得H=N[(T-\lambda I)^{p}]\oplus R[(T-\lambda I)^{p}].
又因为0<n(T-\lambda I)<\infty,所以T-\lambda I为Browder算子,
即\lambda\notin\sigma_{b}(T).
\langle2\rangle~ \lambda\notin acc\sigma(T)
且\lambda\in\rho_{w}(T)\cup\partial\sigma_{w}(T)且\lambda\in\{\lambda\in{\Bbb
C}: 0<n(T-\lambda I)<\infty\}.
当\lambda\notin acc\sigma(T),即\lambda\in\rho(T)\cup
iso\sigma(T).
当\lambda\in\rho(T)时显然有\lambda\notin\sigma_{b}(T).
当\lambda\in iso\sigma(T)时,又因为\lambda\in\{\lambda\in{\Bbb
C}: 0<n(T-\lambda I)<\infty\},所以\lambda\in \pi_{00}(T).
又因为T满足Weyl定理,所以\lambda\notin\sigma_{b}(T).
(2)\Longrightarrow(3). 显然成立.
(3)\Longrightarrow(1).
由于\{[\sigma(T)\backslash\sigma_{w}(T)]\cup\pi_{00}(T)\}\cap\{[\sigma_{\tau}(T)\cap
acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}:
n(T-\lambda I)=\infty 或n(T-\lambda I)=0\}\}=\emptyset,
于是\{[\sigma(T)\backslash\sigma_{w}(T)]\cup
\pi_{00}(T)\}\cap\sigma_b(T)=\emptyset.
这样就容易证明算子T满足Weyl定理.
称算子T为isoloid的,若iso\sigma(T)\subseteq\sigma_{p}(T).
推论2.4T为isoloid的且T满足Weyl
定理当且仅当\sigma_{b}(T)=[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup
int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}: n(T-\lambda I)=\infty\}.
证 设T为isoloid的且T满足Weyl定理. 首先我们证明:
\{\lambda\in\sigma(T): n(T-\lambda
I)=0\}\subseteq[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup
int\sigma_{w}(T).
事实上当T为isoloid算子时有\{\lambda\in\sigma(T): n(T-\lambda
I)=0\}\subseteq[acc\sigma(T)\cup\sigma_{w}(T)].
对任意的\lambda\in\{\lambda\in\sigma(T): n(T-\lambda I)=0\},
若\lambda\notin int\sigma_{w}(T),
则有\lambda\in\partial\sigma_{w}(T).
对\lambda的每一个邻域B_{\delta}(\lambda),都存在\lambda_0\in
B^{0}_{\delta}(\lambda)使得T-\lambda_0I是Weyl算子.
由T满足Weyl定理知T-\lambda_0I是Browder算子,
于是\lambda\in\partial\sigma(T).
断言: \lambda\in\sigma_{\tau}(T).
若\lambda\notin\sigma_{\tau}(T),
由\lambda\in\partial\sigma(T)知T-\lambda I 是Drazin 可逆
(参见文献[2,推论4.9]). 但是由于\lambda\in\{\lambda\in{\Bbb C}: n(T-\lambda
I)=0\},则T-\lambda I是可逆,矛盾.
于是\lambda\in\sigma_{\tau}(T).
综上所述,\{\lambda\in\sigma(T): n(T-\lambda
I)=0\}\subseteq[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup
int\sigma_{w}(T).
因为T满足Weyl定理,由定理2.2知\sigma_{b}(T)=
[(\sigma_{\tau}(T)\cap acc\sigma(T))\cup
int\sigma_{w}(T)\cup\{\lambda\in\sigma(T): n(T-\lambda I)=\infty
或n(T-\lambda I)=0\}]=[(\sigma_{\tau}(T)\cap acc\sigma(T))\cup
int\sigma_{w}(T)\cup\{\lambda\in\sigma(T): n(T-\lambda \\
I)=0\}\cup\{\lambda\in{\Bbb C}: n(T-\lambda
I)=\infty\}]=[(\sigma_{\tau}(T)\cap acc\sigma(T))\cup
int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}: n(T-\lambda I)=\infty\}].
反之,若\sigma_{b}(T)=[\sigma_{\tau}(T)\cap acc\sigma(T)]\cup int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}: n(T-\lambda I)=\infty\},则由定理2.2知T有Weyl 定理. 下证T为isoloid算子.
任给\lambda\in iso\sigma(T),若n(T-\lambda I)=0,
则由\lambda\notin [\sigma_{\tau}(T)\cap acc\sigma(T)]\cup
int\sigma_{w}(T)\cup\{\lambda\in{\Bbb C}: n(T-\lambda
I)=\infty\}=\sigma_{b}(T)知T-\lambda I为Browder算子.
又由于n(T-\lambda I)=0,则T-\lambda I可逆,这与\lambda\in
iso\sigma(T)矛盾. 于是n(T-\lambda I)>0,
即\lambda\in\sigma_{p}(T),因而T为isoloid的算子.
下面来研究Browder定理在紧算子下的摄动,先考虑微小摄动.
定理2.3 设T\in B(H),则下列叙述等价
(1)~ 存在\epsilon>0使得当K\in K(H)且\|K\|<\epsilon时,
T+K有Browder定理;
(2)~ T有Browder定理且\rho_{\tau}(T)中至多
有有限个包含\rho_{w}(T)的连通分支.
证 (1)\Rightarrow(2). 只需证\rho_{\tau}(T)
中至多有有限个包含\rho_{w}(T) 的连通分支. 若不然,
假设\{\Omega_{n}\}_{n=1}^{\infty}为\rho_{\tau}(T)
中一列有界的连通分支.
显然\sum\limits_{n=1}^{\infty}m(\Omega_{n})\leq
m(\widehat{\sigma(T)})<\infty,
其中\widehat{\sigma(T)}表示\sigma(T)的闭凸包,
m(\cdot)表示复平面上的勒贝格测度. 则对\epsilon>0,存在k\in
N使得当n>k时有m(\Omega_{n})<\frac{\pi\epsilon^{2}}{4}.
因为\rho_{\tau}(T)中有无限个包含\rho_{w}(T)的连通分支,
则一定存在一个n_{0}>k使得\Omega_{n_{0}}为
\rho_{\tau}(T)中的一个有界连通分支且\rho_{w}(T)
\cap\Omega_{n_{0}}\neq\emptyset.
显然\partial\Omega_{n_{0}}\subseteq\sigma_{SF}(T),
于是存在K_{1}\in K(H)满足\parallel
K_{1}\parallel<\frac{\varepsilon}{4}且
T+K_{1}=\left(
\begin{array}{cc}
N ~& C \\
0 ~& A \\
\end{array}
\right)
,其中N为正规算子且\sigma(N)=\sigma_{SF}(N)=\partial\Omega_{n_{0}}
(参见文献[11,引理4.1]).
对于算子N,存在紧算子K_{2}' 使得\| K_{2}' \|<\frac{3\varepsilon}{4}
且\sigma(N+K_{2}' )=\overline{\Omega_{n_{0}}}
(参见文献[11,引理4.3]).
对任意的\lambda\in\Omega_{n_{0}},
N-\lambda I可逆,则N+K_{2}' -\lambda I为Weyl算子,
即\Omega_{n_{0}}\subseteq\sigma(N+K_{2}' )\backslash\sigma_{w}(N+K_{2}' ).
令K_{2}=\left(
\begin{array}{cc}
K_{2}' ~ & 0 \\
0 ~& 0 \\
\end{array}
\right)
且K=K_{1}+K_{2},则\parallel K\parallel\leq\varepsilon且K=\left(
\begin{array}{cc}
N+K_{2}' ~& C \\
0~ & A \\
\end{array}
\right)\in K(H)
. 因为\rho_{w}(T)\cap\Omega_{n_{0}}\neq\emptyset,
所以存在\lambda' \in\Omega_{n_{0}}使得T-\lambda' I为Weyl算子,
于是T+K-\lambda' I为Weyl算子. 由于T+K满足Browder定理,
则T+K-\lambda' I为Browder算子,
因此存在\lambda{''}\in\Omega_{n_{0}}使得T+K-\lambda{''}I
可逆. 又因为
\begin{eqnarray*}
T+K-\lambda {''}I&=&\left(
\begin{array}{cc}
N+K_{2}' -\lambda{''} I~~ & C \\
0~~ & A-\lambda{''} I \\
\end{array}
\right)\\
&=&\left(
\begin{array}{cc}
I ~~& 0 \\
0~~ & A-\lambda{''} I \\
\end{array}
\right)\left(
\begin{array}{cc}
I~~ & C \\
0 ~~& I \\
\end{array}
\right)\left(
\begin{array}{cc}
N+K_{2}' -\lambda {''}I ~~& 0 \\
0~~ & I \\
\end{array}
\right),
\end{eqnarray*}
所以N+K_{2}' -\lambda'' I为下有界算子.
又由于N+K_{2}' -\lambda'' I 为Weyl算子,
因而N+K_{2}' -\lambda'' I可逆,
这与\sigma(N+K_{2}' )=\overline{\Omega_{n_{0}}} 矛盾.
(2)\Rightarrow(1).
设\{\Omega_{n}\}_{n=1}^{N}为\rho_{\tau}(T)中N个连通分支满足
\rho_{w}(T)\subseteq\bigcup\limits_{n=1}^N\Omega_{n}
且 \rho_{w}(T)\cap\Omega_{i}\neq\emptyset,i=1,2,\cdots,N.
则对任意的i\in\{1,\cdots,N\},
都存在\lambda_{i}\in\Omega_{i}使得T+K-\lambda_{i}I 为Weyl 算子,
所以T-\lambda_{i}I为Weyl算子.
由T满足Browder定理知T-\lambda_iI为Browder 算子,
于是存在\lambda_{i}' \in\Omega_{i}使得T-\lambda_{i}' I可逆.
又因为\Omega_{i}连通,
则T在\bigcup\limits_{n=1}^N\Omega_{n}上有SVEP (引理2.2),
于是\Omega_{i}\subseteq\rho_{a}(T)\cup
iso\sigma_{a}(T)\subseteq\rho_{SF}(T)\cup iso\sigma_{a}(T).
因而对每一个i\in\{1,2,\cdots,N\},
都存在\rho_{SF}(T)的一个分支\Omega_{i_{0}}使得\Omega_{i}=\Omega_{i_{0}}\cup
E_{i},其中E_{i}为至多可数集,则\Omega_{i_{0}}连通,i=1,2,
\cdots,N.
又因为\partial\Omega_{i_{0}}\subseteq\partial\Omega_{i}\subseteq\sigma_{SF}(T),
所以\Omega_{i_{0}}为\rho_{SF}(T)的一个连通分支,i=1,2,\cdots,
N,进而\Omega_{i_{0}} 为\rho_{SF}(T+K)的一个连通分支.
由于对任意的i\in\{1,2,\cdots,N\},T-\lambda_{i}' I可逆,
则存在\varepsilon>0使得当K\in K(H)且\parallel
K\parallel<\varepsilon时有T+K-\lambda_{i}I可逆,由文献[9]中推论1.14
可知\Omega_i\subseteq\rho(T+K)\cup E_{i}' ,
其中E_{i}' 为至多可数集且E_{i}' 在\Omega_{i}中无极限点,
则有
\rho_{w}(T+K)\subseteq\bigcup\limits_{n=1}^N\Omega_{n}\subseteq\rho(T+K)\cup(\bigcup\limits_{i=1}^N
E_{i}' ),
于是\sigma(T+K)\backslash\sigma_{w}(T+K)\subseteq(\bigcup\limits_{i=1}^N
E_{i}' ),从而T+K有Browder定理.
对于Browder定理的所有的紧摄动,有如下结论
定理2.4 对任意的K\in K(H),T+K都满足Browder
定理当且仅当\rho_\tau(T)中仅有一个包含\rho_{w}(T)的连通分支.
证 设对任意的K\in K(H),T+K都满足Browder定理.
若``\rho_{\tau}(T)中仅有一个包含\rho_{w}(T)的连通分支"不成立,
则存在\Omega_{0} 为\rho_{\tau}(T)
中的一个有界连通分支满足\Omega_{0}\cap\rho_{w}(T)\neq\emptyset.
由于\Omega_{0}
连通且\partial\Omega_{0}\subseteq\sigma_{\tau}(T)\subseteq\sigma_{SF}(T),
于是存在K_{1}\in K(H)使得
T+K_{1}=\left( \begin{array}{cc} N ~~& C\\
0 ~~& A \end{array} \right) ,
其中N为正规算子且\sigma(N)=\sigma_{SF}(N)=\partial\Omega_{0}
(参见文献[11,引理4.1]).
对于算子N存在紧算子K_{2}' 使得\sigma(N+K_{2}' )=
\overline{\Omega_{0}}
(参见文献[11,引理4.3]). 对任意的\lambda\in\Omega_{0},由N-\lambda
I可逆知N+K_{2}' -\lambda I为Weyl算子,
即\Omega_{0}\subseteq\sigma(N+K_{2}' )
\backslash\sigma_{w}(N+K_{2}' ).
令
K_{2}=\left(
\begin{array}{cc}
K_{2}' ~~& 0 \\
0~~ & 0 \\
\end{array}
\right)
且K=K_{1}+K_{2},则有
K=\left(
\begin{array}{cc}
N+K_{2}' ~~ & C \\
0 ~~& A \\
\end{array}
\right)\in K(H)
.
由于\rho_{w}(T)\cap\Omega_{0}\neq\emptyset,
则一定存在\lambda' \in\Omega_{0}使得T-\lambda' I为Weyl算子,
于是T+K-\lambda' I 为Weyl算子. 因为T+K有Browder定理,
则T+K-\lambda' I为Browder算子,类似于定理2.3 的证明,得到矛盾.
反之,设\Omega为\rho_{\tau}(T)中仅包含\rho_{w}(T)的连通分支.
由\rho(T)\subseteq\rho_{w}(T)\subseteq\Omega知T在\Omega上有SVEP(引理2.2),
则\Omega\subseteq\rho_{a}(T)\cup
iso\sigma_{a}(T)\subseteq\rho_{SF}(T)\cup iso\sigma_{a}(T),
于是存在\Omega_0\subseteq\rho_{SF}(T)为一个分支使得\Omega=\Omega_0\cup
E,其中E为至多可数集,\Omega_{0}连通. 可以证明\Omega_0
为\rho_{SF}(T)的一个连通分支. 由于\rho_w(T)\subseteq\Omega,
则\rho_{w}(T)\subseteq\Omega_{0},因而\rho_{w}(T)连通,
所以对任意的K\in K(H) 都有\rho_{w}(T+K)连通.
又由于\rho(T+K)\subseteq\rho_{w}(T+K),
于是\rho_{w}(T+K)=\rho(T+K)\cup E' (参见文献[13,推论1.14]),
其中E' 为至多可数集且E' 在\rho_{w}(T+K)中无极限点.
所以\sigma(T+K)\backslash\sigma_{w}(T+K)\subseteq E' .
因此对任意的K\in K(H),T+K都有Browder定理.
由引理2.3,定理2.4可知
推论2.5 \sigma_{\tau}(T)=\emptyset,
则对任意的K\in
K(H),T+K有Browder 定理.
事实上,\sigma_{\tau}(T)=\emptyset当且仅当T为代数算子,
于是对代数算子T,任给紧算子K,T+K都满足Browder定理.