数学物理学报  2015, Vol. 35 Issue (2): 312-323   PDF (337 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
赵金虎
刘白羽
徐尔
一类完全非线性椭圆型方程组解的对称性
赵金虎 , 刘白羽, 徐尔    
北京科技大学数理学院 北京 100083
摘要:通过结合移动平面法及其角点区域的Hopf引理得到了有界区域上一类完全非线性椭圆型方程组解的对称性和单调性.
关键词移动平面法     完全非线性方程组     对称性    
The Symmetry of Solutions to a Fully Nonlinear Elliptic Equations
Zhao Jinhu, Liu Baiyu, Xu Er    
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083
Abstract: In this paper, we obtain a symmetry and monotonicity result for solutions of a fully nonlinear elliptic system in bounded domain. Our method employs the moving plane method with Hopf's lemma at a corner.
Key words: Moving Plane Method     Fully Nonlinear Equations     Symmetry    
1 引言

20世纪50年代,Alexandrov创立了移动平面法并用其研究了 常平均曲率曲面嵌入问题的唯一性[1]. 其后,经过Serrin[2],Gidas,Ni 和Nirenberg[3],Caffarelli,Gidas和 Spruck[4],Li[5],Chen和 Li[6,7],Damascelli,Pacella和Ramaswamy[8] 等学者的进一步发展和完善, 移动平面法已成为研究非线性椭圆方程解的对称性,单调性, 非存在性以及先验估计的有力工具.

Monge-Ampere方程是典型的完全非线性方程,利用移动平面方法 Delanoe[9]证明了单位球上的一类 Monge-Ampere方程凸解的径向对称性. 对于一般的完全非线性椭圆方程Dirichlet边值问题 \begin{equation} \label{jinhu1} \left\{ \begin{array}{ll} F(x,u,u_{11},\cdots,u_{NN})=0,~~& x\in S=(-1,1)\times \Omega,\\ u=0,& x\in \partial S, \end{array} \right.(1.1) \end{equation} 其中$\Omega$是${\Bbb R}^{N-1}$中的单位球. Li[10]证明了: 若$u\in C^{2, \alpha}(\overline{S})$是问题(1.1)的正解,且(i) $F$在$x_1$ 和$\{p_{12},\cdots,p_{1N}\}$ 方向上是对称的; (ii) $F$在$x_1$方向上的左半区域是递增的, 即$F_{x_1}(x_1,y,u,$ $u_{11},\cdots,u_{NN})\geq0$,$-1<x_1<0$. 那么$u$在$x_1$方向上是对称的,并且只有一个极大值. 其后,Li[11] 将该结果推广到无界区域上.

对于半线性椭圆方程组,前人也做了大量的工作,如文献[]. 其中,Busca和Sirakov[12]研究了半线性椭圆方程组 \begin{equation} \label{jinhu2} \left\{ \begin{array}{ll} \Delta u+g(u,v)=0,~~& x\in {\Bbb R}^N,\\ \Delta v+f(u,v)=0,& x\in {\Bbb R}^N, \end{array} \right.(1.2) \end{equation} 具有衰减性质正解的对称性. 假设$(u,v)$是方程组(1.2)的正解,当$|x|\rightarrow\infty$时, $u(x)\rightarrow0$,$v(x)\rightarrow0$. 若$f$,$g$满足

(i)~ $f$,$g \in C^1([0,\infty)\times [0,\ \ \infty),{\Bbb R}),\ (u,v)\in [0,\infty)\times [0,\infty)$;

(ii)~ $\frac{\partial g}{\partial v}(u,v)\geq0$,$\frac{\partial f}{\partial u}(u,v)\geq0$;

(iii)~ $\frac{\partial g}{\partial u}(0,0)<0,\ \frac{\partial f}{\partial v}(0,0)<0$; (iv)~ $\det A>0,\ A=\left( \begin{array}{cc} \frac{\partial g}{\partial u} & \frac{\partial g}{\partial v} \\ \frac{\partial f}{\partial u} & \frac{\partial g}{\partial v} \\ \end{array} \right)(0,0) $. \\ 那么存在两点$x_0$,$x_1\in {\Bbb R}^N $,使得$u(x)=u(|x-x_0|),\ v(x)=v(|x-x_1|)$,并且对于$\forall r_1=|x-x_0|$ 和$\forall r_2=|x-x_1|$,分别有$\frac{{\rm d}u}{{\rm d}r_1}<0$和$\frac{{\rm d}v}{{\rm d}r_2}<0$成立.

本文通过结合上面介绍的完全非线性椭圆方程与半线性椭圆方程组解的对称性研究办法, 考虑如下完全非线性椭圆方程组解的对称性 \begin{equation} \label{jinhu3} \left\{ \begin{array}{lll} F(x,u,u_{11},\cdots,u_{NN})+g(u,v)=0,~~ & x\in S=(-1,1)\times \Omega,\\ G(x,v,v_{11},\cdots,v_{NN})+f(u,v)=0,& x\in S=(-1,1)\times \Omega,\\ u(x)=0,v(x)=0,&x\in \partial S, \end{array} \right.(1.3) \end{equation} 其中,$\Omega$是${\Bbb R}^{N-1}$中的单位球, $F$和$G$满足一致椭圆型条件.

定义1.1 (一致椭圆型条件[18]) 设偏微分算子 $$ L=\sum_{i,j=1}^Na^{ij}(x)D_{ij}+\sum_{i=1}^Nb^i(x)D_i+c(x),a^{ij}=a^{ji}, $$ 其中,$a_{ij}(x),b_i(x),c(x)$为定义在开集$\Omega\subset {\Bbb R}^N$上的函数. 若存在的正数$\theta$,使得$$\sum_{i,j=1}^Na^{ij}(x)\xi_i\xi_j\ge \theta {\left| \xi \right|^2},\ \forall x \in \Omega,\ \xi \in {\Bbb R}^N,$$ 则称$L$是一致椭圆型算子.

对于方程组(1.3)中的$F$满足一致椭圆型条件是指存在正数$\theta$,使得 \begin{equation} \label{def:uelli} \sum\limits_{i,j=1}^N {{F_{{p_{ij}}}}\left( {x,u,p_{11},\cdots,p_{NN}} \right)} {\xi _i}{\xi _j} \ge \theta{\left| \xi \right|^2}(1.4) \end{equation} 对所有的$\xi\in {\Bbb R}^N$均成立.

本文的主要定理如下.

{\heiti\bf 定理1.2} 设$F$,$G\in C^1(S,[0,\infty),{\Bbb R}^\frac{N\times(N+1)}{2})$,$f$,$g\in C^1([0,\infty)\times[0,\infty))$,当满足如下条件

(i) $$ {F_p}\left({-1,y,0,p_{11},\cdots,p_{NN}} \right) + \frac{{\partial g}}{{\partial u}}\left( {0,0} \right) < - {c_1},~c_1>0,~\forall p_{ij}\in {\Bbb R},\forall y\in \Omega; $$ $$ {G_s}\left({-1,y,0,s_{11},\cdots,s_{NN}} \right) + \frac{{\partial f}}{{\partial v}}\left( {0,0} \right) < - {c_2},~c_2>0,~\forall s_{ij}\in {\Bbb R},\forall y\in \Omega. $$

(ii)~ $F$关于$x_1 $和$ \left\{ {{p_{12}},\cdots ,{p_{1N}}} \right\} $对称,$G$关于$x_1$和$ \left\{ {{s_{12}},\cdots ,{s_{1N}}} \right\}$对称,并且对于$\forall (x_1,y)\in S,\ x_1<0,\ \forall u,v>0,\ \forall {p_{ij}},{s_{ij}} \in {\Bbb R}$,$i=1,\cdots,N$, $j=i,\cdots,N$,有下式成立 $$ {F_{{x_1}}}\left( {{x_1},y,u,p_{11},\cdots,p_{NN}} \right) \ge 0;\ {G_{{x_1}}}\left( {{x_1},y,v,s_{11},\cdots,s_{NN}} \right) \ge 0. $$

(iii)~ 对于$u$,$v \in \left[{0,\infty } \right) \times \left[{0,\infty } \right)$, $\frac{{\partial g}}{{\partial v}} \left( {u,v} \right) \ge 0$, $\frac{{\partial f}}{{\partial u}}\left({u,v} \right) \ge 0.$

(iv)~ $\forall p_{ij},s_{ij}\in {\Bbb R}$,$\forall y,y'\in \Omega$, $$ \left| \begin{array}{*{20}{cc}} F_p\left(-1,y,0,p_{11},\cdots,p_{NN} \right)+ \frac{\partial g}{\partial u}\left(0,0\right) ~~& \frac{\partial g}{\partial v}(0,0) \\[3mm] \frac{\partial f}{\partial u}\left(0,0\right) ~~& G_s\left(-1,y',0 ,s_{11},\cdots,s_{NN} \right)+\frac{\partial f}{\partial v}\left(0,0\right)\\ \end{array} \right| > 0. $$

那么对于方程组(1.3)的任意$C^2$正解$(u,v)$必须在$x_1$方向上对称, 且只有一个极大值,即对于$(x_1,y)\in S,\ - 1 <x_1< 0$,有 $$ u(x_1,y) = u(-x_1,y ),\ u_1(x_1,y)>0,$$$$v(x_1,y)= v(-x_1,y),\ v_1(x_1,y)>0.$$

上述完全非线性方程组的一个特殊情形为实椭圆型Monge-Ampere方程组. 在几何中可用于两个耦合曲面的预定高斯曲率问题[19,20].

利用上述定理1.2,对于实Monge-Ampere方程组 \begin{equation} \label{corollary1} \left\{ \begin{array}{ll} -\det \left(D^2u \right) + g\left(u,v\right) = 0,~~& x \in S =(-1,1) \times (-1,1),\\ -\det \left(D^2v \right) + f\left(u,v \right) = 0,& x \in S =(-1,1) \times (-1,1),\\ u(x)=v(x)=0,& x\in \partial S,\\ u(x)>0,v(x)>0,& x\in S, \end{array} \right.(1.5) \end{equation}可以得到如下推论.

推论1.3

(i')~ $\frac{\partial g}{\partial u}(0,0)<-c_1$, $\frac{\partial f}{\partial v}(0,0)<-c_2$,$c_1,c_2>0$; (ii')~ 对于任意的$u,v\geq 0$有 $\frac{\partial g}{\partial v}(u,v) \geq0$, $\frac{\partial f}{\partial u}(u,v)\geq0$;

(iii')~ $ \left| \begin{array}{cc} \frac{\partial g}{\partial u}\left(0,0\right) & \frac{\partial g}{\partial v}(0,0) \\ \frac{\partial f}{\partial u}\left(0,0\right) & \frac{\partial f}{\partial v}\left(0,0\right)\\ \end{array} \right| > 0. $ \\ 若$u,v\in {C^2}\left( S \right) \cap C\left( {\bar S} \right)$ 为方程组(1.5)的正的严格凹解, 则 $$ u(x_1,y) = u(-x_1,y ),~~ u_1(x_1,y)>0,~~ \forall x_1<0,y\in (-1,1); $$ $$ v(x_1,y)= v(-x_1,y),~~ v_1(x_1,y)>0,~~ \forall x_1<0,y\in (-1,1). $$

2 预备引理

本节对要用到的引理进行引用和证明并为定理的证明做一些准备.

取$T_\lambda=\{x\in S|x_1=\lambda,\ -1 < \lambda \leq 0\}$ 是一个与$x_1$轴垂直的平面, $${\Sigma _\lambda }= \left\{ {x \in S\left| { - 1 < {x_1} < \lambda } \right.} \right\}$$是$S$中在平面$T_\lambda$左边的部分. 对于$-1<\lambda\leq0$, 定义$x^\lambda=(2\lambda-x_1,y)$是$(x_1,y)$关于$T_\lambda$的对称点. 我们比较解$u$和$v$在$\Sigma_\lambda$上某点的值与其对称点的值. 对于$x \in {\Sigma _\lambda }$,记 $$ {u^\lambda }\left( x \right) = u\left( {{x^\lambda }} \right),~~ {v^\lambda }\left( x \right) = v\left( {{x^\lambda }} \right);$$$$\omega \left( {x,\lambda } \right) = {u^\lambda }\left( x \right) - u\left( x \right), ~~\varphi \left( {x,\lambda } \right) = {v^\lambda }\left( x \right) - v\left( x \right).$$

这些函数也可看成是定义在$$ {Q_\mu } = \left\{ {\left( {{x_1},y,\lambda } \right) \in S \times [- 1,0]\left| { - 1 < {x_1} < \lambda < \mu } \right.} \right\} $$ 上的关于$(x,\lambda)$的函数. 注意到,我们只需证明解$u$,$v$关于$T_0$对称, 即$\omega(x,0)\equiv0$和$\varphi(x,0)\equiv0$.

记 $$ \Sigma_{\lambda}^{\omega^-}=\{x\in \Sigma_\lambda|\omega(x,\lambda)<0\},~~ \Sigma_{\lambda}^{\varphi^-}=\{x\in \Sigma_\lambda|\varphi(x,\lambda)<0\}. $$

引理2.1 若 $F$,$G\in C^1(S,[0,\infty),{\Bbb R}^\frac{N\times(N+1)}{2})$满足定理1.2中条件(i), 则存在正数$\delta_1$,使得当$-1<\lambda<-1+\delta_1$时, 对任意$x\in \Sigma_\lambda^{\omega^-}$,有 $$ \int_0^1 F_p\left(x,u(x)+t\omega(x),u_{ij}^{\lambda}(x)\right){\rm d}t+ \frac{\partial g}{\partial u}\left(\xi,v(x)\right)<0, $$ 其中,$\xi$为介于$u^{\lambda}(x)$和$u(x)$之间的任意值; 存在正数$\delta_2$, 使得当$-1<\lambda<-1+\delta_2$时,对任意$x\in \Sigma_\lambda^{\varphi^-}$,有 $$ \int_0^1 G_s \left(x,v(x)+t\varphi(x),v_{ij}^{\lambda}(x)\right){\rm d}t + \frac{\partial f}{\partial v}\left(u(x),\eta \right) < 0, $$ 其中,$\eta$可取$v^{\lambda}(x)$和$v(x)$之间的任意值.

由于$F\in C^1(S,[0,\infty),{\Bbb R}^\frac{N\times(N+1)}{2})$且满足(i),因此存在$\epsilon>0$,使得当$-1<\lambda<-1+\epsilon$时,对任意$p_{ij}\in {\Bbb R}^\frac{N\times(N+1)}{2}$,$p>0,s>0,\xi>0$,$0<p<\epsilon$,$\xi+s<\epsilon$,及任意$x\in \Sigma_\lambda$, 有 $$ F_p\left( {x,p,{p_{ij}}} \right) + \frac{{\partial g}}{{\partial u}}\left( {\xi,s} \right) < -c_1/2<0. $$ 由于当$x_1=-1$时,$u(x)=0$,$v(x)=0$,因此对上述$\epsilon>0$,存在$\delta_1>0 (\delta_1<\epsilon)$,使得 $-1< \lambda <-1+\delta_1$时有 $u(x)+v(x)<\epsilon$. 于是对于$x\in \Sigma_\lambda^{\omega^-}$, $0<u^\lambda(x)<u(x)$,此时有 $u(x)+t\omega(x)=(1-t)u(x)+tu^{\lambda}(x)<u(x)<\epsilon$,$\forall t\in (0,1)$. 对于任意$\xi\in (u^{\lambda}(x),u(x))$,有 $\xi+v(x)<u(x)+v(x)<\epsilon$. 故有,对$t\in (0,1)$ $$ F_p\left(x,u(x)+t\omega(x),u_{ij}^{\lambda}(x)\right)+ \frac{\partial g}{\partial u}\left(\xi,v(x)\right)<-c_1/2. $$ 两边对$t$在$(0,1)$上积分得 $$ \int_0^1 F_p\left(x,u(x)+t\omega(x),u_{ij}^{\lambda}(x)\right){\rm d}t+ \frac{\partial g}{\partial u}\left(\xi,v(x)\right)<0. $$

对于$G$的结果,证明类似.

引理2.2 设$F$,$G\in C^1(S,[0,\infty),{\Bbb R}^\frac{N\times(N+1)}{2})$,$f$,$g\in C^1([0,\infty)\times[0,\infty))$,满足定理1.2中的条件(iv), 则存在$\delta_3>0$,使得$-1<\lambda<-1+\delta_3$时, 对任意$x^*,x^{**}\in \Sigma_\lambda^{\omega^-}\cap \Sigma_{\lambda}^{\varphi^-}$,有 $$ \alpha(\lambda)\delta(\lambda)-\beta(\lambda)\gamma(\lambda)>0, $$ 其中, $$ \alpha(\lambda)=\int_0^1F_p(x^*,u(x^*)+t\omega(x^*),u_{ij}^{\lambda}(x^*)){\rm d}t+\frac{\partial g}{\partial u}(\xi_1,v(x^*)), $$ $$ \delta(\lambda)=\int_0^1G_p(x^{**},v(x^{**})+t\varphi(x^{**}), v_{ij}^{\lambda}(x^{**})){\rm d}t+\frac{\partial f}{\partial v}(u(x^{**}),\eta_2), $$ $$ \beta(\lambda)= \frac{\partial g}{\partial v}(u^\lambda(x^*),\eta_1),\gamma(\lambda)=\frac{\partial f}{\partial u}(\xi_2,v(x^{**})); $$ $\xi_1$可取介于$u(x^*)$和$u^{\lambda}(x^{*})$之间的任意值, $\xi_2$可取介于$u(x^{**})$和$u^{\lambda}(x^{**})$之间的任意值, $\eta_1$可取介于$v(x^*)$和$v^{\lambda}(x^{*})$之间的任意值, $\eta_2$可取介于$v(x^{**})$和$v^{\lambda}(x^{**})$之间的任意值.

记\begin{eqnarray*} & & A(x,\tilde{x},p,p',\tilde{p},p_{ij},s,s',\tilde{s},s_{ij},\xi_1,\xi_2,\eta_1,\eta_2)\\ & =& \left| \begin{array}{cc} F_p(x,p,p_{ij})+\frac{\partial g}{\partial u}(\xi_1,s)~~ & \frac{\partial g}{\partial v}(p',\eta_1)\\[3mm] \frac{\partial f}{\partial u}(\xi_2,\tilde{s})~~ & G_p(\tilde{x},s',s_{ij})+\frac{\partial f}{\partial v}(\tilde{p},\eta_2) \end{array} \right|. \end{eqnarray*} 由(iv)可知,存在$\epsilon>0$,使得当$-1<\lambda<<-1+\epsilon$时, 对任意$x,\tilde{x}\in \Sigma_{\lambda}$,$p>0$,$s>0$,$\tilde{p}>0$, $\tilde{s}>0$,$\xi_i>0$,$\eta_i>0$ $(i=1,2)$, $p+s<\epsilon$,$\tilde{p}+\tilde{s}<\epsilon$,$0<p'<p<\epsilon$, $0<s'<s<\epsilon$,$\xi_1+s<\epsilon$,$\xi_2+\tilde{s}<\epsilon$, $\eta_1+p<\epsilon$,$\eta_2+\tilde{p}<\epsilon$,有 $$ A(x,\tilde{x},p,p',\tilde{p},p_{ij},s,s',\tilde{s},s_{ij}, \xi_1,\xi_2,\eta_1,\eta_2)>0,~~\forall p_{ij},s_{ij}\in {\Bbb R}. $$ 对于上述$\epsilon$,存在$\delta_3>0$,使得$-1<\lambda<-1+\delta_3$时,对任意$x^*,x^{**}\in \Sigma_\lambda^{\omega^-}\cap \Sigma_{\lambda}^{\varphi^-}$,有 $u(x^*)+v(x^*)<\epsilon$,$u(x^{**})+v(x^{**})<\epsilon$,且$0<u^\lambda(x^*)<u(x^*)<\epsilon$,$v^{\lambda}(x^{**})<v(x^{**})$,$0<v(x^{**})+t_2\varphi(x^{**})=t_2v^{\lambda}(x^{**})+(1-t_2)v(x^{**})<v(x^{**})<\epsilon$,$\xi_1+v(x^*)<u(x^*)+v(x^*)<\epsilon$,$\xi_2+v(x^{**})<u(x^{**})+v(x^{**})<\epsilon$,$\eta_1+u(x^*)<v(x^*)+u(x^*)<\epsilon$,$\eta_2+u(x^{**})<v(x^{**})+u(x^{**})<\epsilon$. 于是对于 $\forall t_1,t_2\in (0,1)$, \begin{eqnarray} \nonumber 0&<& A(x^*,x^{**},u(x^*)+t_1\omega(x^*),u^\lambda(x^*),u(x^{**}),u_{ij}^{\lambda}(x^*),\\ \nonumber & & v(x^{*}),v(x^{**})+t_2\varphi(x^{**}),v(x^{**}),v_{ij}^{\lambda}(x^{**}),\xi_1,\xi_2,\eta_1,\eta_2)\\ \nonumber &=&\left(F_p(x^*,u(x^*)+t_1\omega(x^*),u_{ij}^{\lambda}(x^*))+\frac{\partial g}{\partial u}(\xi_1,v(x^*))\right)\\ \nonumber & & \cdot \left(G_p(x^{**},v(x^{**})+t_2\varphi(x^{**}),v_{ij}^{\lambda}(x^{**}))+\frac{\partial f}{\partial v}(u(x^{**}),\eta_2)\right) \\ \label{eq:a} & & -\frac{\partial g}{\partial v}(u^\lambda(x^*),\eta_1)\cdot\frac{\partial f}{\partial u}(\xi_2,v(x^{**})).(2.1) \end{eqnarray} 注意到当$-1<\lambda<-1+\delta_3$时,对任意$x^*,x^{**}\in \Sigma_\lambda^{\omega^-}\cap \Sigma_{\lambda}^{\varphi^-}$,有 \begin{eqnarray*} & & \alpha(\lambda)\delta(\lambda)-\beta(\lambda)\gamma(\lambda)\\ &=& \left(\int_0^1F_p(x^*,u(x^*)+t\omega(x^*),u_{ij}^{\lambda}(x^*)){\rm d}t+\frac{\partial g}{\partial u}(\xi_1,v(x^*))\right)\\ & & \cdot \left(\int_0^1G_p(x^{**},v(x^{**})+t\varphi(x^{**}),v_{ij}^{\lambda}(x^{**})){\rm d}t+\frac{\partial f}{\partial v}(u(x^{**}),\eta_2)\right)\\ & & -\frac{\partial g}{\partial v}(u^\lambda(x^*),\eta_1)\cdot \frac{\partial f}{\partial u}(\xi_2,v(x^{**}))\\ &=& \int_0^1\int_0^1\left[\left(F_p(x^*,u(x^*)+t_1\omega(x^*),u_{ij}^{\lambda}(x^*))+\frac{\partial g}{\partial u}(\xi_1,v(x^*))\right)\right.\\ & & \qquad \qquad \cdot \left(G_p(x^{**},v(x^{**})+t_2\varphi(x^{**}),v_{ij}^{\lambda}(x^{**})){\rm d}t +\frac{\partial f}{\partial v}(u(x^{**}),\eta_2)\right)\\ & & \qquad \qquad \left.-\frac{\partial g}{\partial v}(u^\lambda(x^*), \eta_1)\cdot \frac{\partial f}{\partial u}(\xi_2,v(x^{**}))\right]{\rm d}t_1{\rm d}t_2\\ &>& 0. \end{eqnarray*}

定理1.2的证明要用到角点区域的Hopf引理,其证明见文献[3].

引理2.3 (角点区域的Hopf引理,参见文献[10,Lemma A.1]或[3])

设$\Omega$是${\Bbb R}^N$中的区域,原点在其边界上, 并且在原点附近的边界包含两个横向分割的$C^2$超曲面$\rho=0$, $\sigma=0$. 在$\Omega$中有$\rho<0$,$\sigma<0$. 并设$u\in C^2$是微分不等式 $Lu = \sum\limits_{i,j} {{a_{ij}}\left( x \right)} {u_{ij}}\left( x \right) + \sum\limits_i {{b_i}} \left( x \right){u_i}\left( x \right) + c\left( x \right)u\left( x \right) \le 0$ 在$\overline{\Omega}$中的正解. 其中$a_{ij}\in C(\overline{\Omega})$,$ L$是一致椭圆的. 原点处记$\mu=\frac{{{a_{ij}}{\rho _i}{\sigma _j}}}{{\sqrt {{a_{ij}}{\rho _i}{\rho _j}} \sqrt {{a_{ij}}{\sigma _i}{\sigma _j}} }} $,则$-1<\mu<1$. 令$\theta_0=\arccos (-\mu)$. 如果在原点附近的$\overline{\Omega}$内,$u\in C^{k, \alpha}$,$k+\alpha>\frac{\pi}{\theta_0}$,则 $ \left(\frac{\partial }{\partial s}\right)^ju ,\ j = 0,\cdots ,k $ 中至少有一个在原点处严格正, 这里$s$是指向$\Omega$内的任意的一个方向.

3 证明

本节给出定理1.2及推论1.3的证明.

先对方程组做一些处理. 由条件(ii),$F$和$G$关于$x_1$和$\left\{ {{u_{12}},\cdots,{u_{1N}}} \right\}$对称, 可知$u^\lambda$和$v^\lambda$同样满足方程组(1.3),即 \begin{equation} \label{jinhu4} \left\{ \begin{array}{ll} F(x^\lambda,u^\lambda,u^\lambda_{ij})+g(u^\lambda,v^\lambda)=0,\ x \in {\Sigma _\lambda },\\ G(x^\lambda,u^\lambda,u^\lambda_{ij})+f(u^\lambda,v^\lambda)=0,\ x \in {\Sigma _\lambda }. \end{array}(3.1) \right. \end{equation} 方程组(1.3)和(3.1)分别对应相减得 \begin{equation} \label{jinhu5} F(x^\lambda,u^\lambda,u_{ij}^\lambda) - F\left( {x,u,{u_{ij}}} \right) + g\left( {{u^\lambda },{v^\lambda }} \right) - g\left( {u,v} \right) = 0,(3.2) \end{equation} \begin{equation} \label{jinhu6} G(x^\lambda,v^\lambda,v_{ij}^\lambda) - G\left( {x,v,{v_{ij}}} \right) + f\left( {{u^\lambda },{v^\lambda }} \right) - f\left( {u,v} \right) = 0.(3.3) \end{equation} 利用中值定理处理(3.2)和(3.3)式得到 \begin{eqnarray} \label{jinhu7} \nonumber &&\int_0^1 {{F_{{x_1}}}} \left( {{x_1} + t\left( {2\lambda - 2{x_1}} \right),y,{u^\lambda },u_{ij}^\lambda } \right)\left( {2\lambda - 2{x_1}}\right){\rm d}t\\ \nonumber&&+ \left[{\int_0^1 {{F_p}\left( {x,u + t\omega ,u_{ij}^\lambda } \right){\rm d}t + \frac{{\partial g}}{{\partial u}}\left( {{\xi _1}\left( {x,\lambda } \right),v} \right)} } \right]\omega\\ \nonumber&&+ \sum\limits_{i,j} {\int_0^1 {{F_{{p_{ij}}}}} } \left( {x,u,{u_{ij}} + t{\omega _{ij}}} \right){\rm d}t\cdot \omega _{ij}\\ &=& - \frac{{\partial g}}{{\partial v}}\left( {{u^\lambda },{\eta _1}\left( {x,\lambda } \right)} \right)\varphi.(3.4) \end{eqnarray} \begin{eqnarray} \label{jinhu8} \nonumber &&\int_0^1 {{G_{{x_1}}}} \left( {{x_1} + t\left( {2\lambda - 2{x_1}} \right),y,{v^\lambda },v_{ij}^\lambda } \right)\left( {2\lambda - 2{x_1}}\right){\rm d}t\\ \nonumber&&+ \left[{\int_0^1 {{G_p}\left( {x,v + t\varphi ,v_{ij}^\lambda } \right){\rm d}t + \frac{{\partial f}}{{\partial v}}\left( u,{{\eta _2}\left( {x,\lambda } \right)} \right)} } \right]\varphi\\ \nonumber&&+ \sum\limits_{i,j} {\int_0^1 {{G_{{p_{ij}}}}} } \left( {x,v,{v_{ij}} + t{\varphi_{ij}}} \right){\rm d}t\cdot \varphi_{ij}\\ &=& - \frac{{\partial f}}{{\partial u}}\left( {{\xi_2}\left( {x,\lambda }\right),{v^\lambda }} \right)\omega,(3.5) \end{eqnarray} 其中, $${\xi _i}\left( {x,\lambda } \right) \in \left( {\min \left\{ {u\left( x \right),{u^\lambda }\left( x \right)} \right\},\max \left\{ {u\left( x \right),{u^\lambda }\left( x \right)} \right\}} \right),$$ $${\eta _i}\left( {x,\lambda } \right) \in \left( {\min \left\{ {v\left( x \right),{v^\lambda }\left( x \right)} \right\},\max \left\{ {v\left( x \right),{v^\lambda }\left( x \right)} \right\}} \right),\ i=1,2;$$ $$F_{p_{ij}}\left(x,u,u_{ij}+t\omega _{ij}\right) = F_{p_{ij}}\left(x,u,u_{11},\cdots ,u_{ij - 1},u_{ij} + t{\omega _{ij}},u_{ij + 1}^\lambda ,\cdots ,u_{NN}^\lambda \right),$$ $$G_{p_{ij}}\left(x,v,v_{ij}+ t\varphi _{ij} \right) = {F_{{p_{ij}}}}\left( {x,v,{v_{11}},\cdots ,{v_{ij - 1}},{v_{ij}} + t{\varphi _{ij}},v_{ij + 1}^\lambda ,\cdots ,v_{NN}^\lambda } \right),$$$$\ i=1,2,\cdots,N,\ j= i,i+1,\cdots ,N-1;$$ $$F_{p_{iN}}\left(x,u,u_{iN}+t\omega _{iN}\right) = F_{p_{iN}}\left(x,u,u_{11},\cdots ,u_{iN - 1},u_{iN} + t{\omega _{iN}},u_{i+1 i+1}^\lambda ,\cdots ,u_{NN}^\lambda \right),$$ $$G_{p_{iN}}\left(x,v,v_{iN}+ t\varphi _{iN} \right) = {G_{{p_{iN}}}}\left( {x,v,{v_{11}},\cdots ,{v_{iN - 1}},{v_{iN}} + t{\varphi _{iN}},v_{i+1i+1}^\lambda ,\cdots ,v_{NN}^\lambda } \right),$$ $$i=1,2,\cdots,N.$$

定理1.2的证明分四步.

第一步 证明存在$-1<\lambda^*\leq0$, 使得当$-1<\lambda<\lambda^*\leq0$时, $$ \omega(x,\lambda)\geq 0, \varphi(x,\lambda)\geq 0,\forall x\in \Sigma_\lambda. $$

用反证法证明. 假设上述不等式不成立,则对于每一个$\lambda \in (-1,0)$, 都存在点$x_\lambda \in \Sigma_\lambda$,使得 $\omega(x_\lambda,\lambda)<0$或$\varphi(x_\lambda,\lambda)<0$. 不妨设$\omega(x_\lambda,\lambda)<0$. 由于所考虑的函数$u$在区域$S$的边界上等于$0$,在区域$S$的内部严格大于零, 因此当$x\in \partial \Sigma_\lambda$时, $\omega(x,\lambda)\geq 0$. 所以,$\omega(x,\lambda)$在$\Sigma_\lambda$的内部能够取得负的最小值. 记 $$ \omega \left( {{x_0}},\lambda\right) = \mathop {\min }\limits_{x \in \overline{\Sigma _\lambda }} \omega \left( x ,\lambda \right) < 0,\ {x_0} = \left( {x_0^1,x_0^2,\cdots x_0^N} \right), $$ 则有 $$ \nabla _x\omega \left(x_0,\lambda \right) = 0,\ \left\{ \omega _{ij}\left(x_0,\lambda \right) \right\} \geq 0. $$

根据引理2.1,引理2.2, 取$\delta = \min \left\{\delta _1,\delta_2,\delta_3,\frac{1}{2} \right\}$,当 $-1<\lambda<-1+\delta$时,有 $$ \alpha \left( \lambda \right) := \int_0^1 {{F_p}\left( {{x_0},u(x_0) + t\omega \left( {{x_0}} \right),u_{ij}^\lambda \left( {{x_0}} \right)} \right){\rm d}t + \frac{{\partial g}}{{\partial u}}\left( {{\xi _1}\left( {{x_0},\lambda } \right),v\left( {{x_0}} \right)} \right)} < 0. $$ 根据条件(ii),则有$$ \int_0^1 {{F_{x_1}}} \left( {x_0^1 + t\left( {2\lambda - x_0^1} \right)},x_0^2,\cdots x_0^N,u + t\omega \left( {{x_0}} \right),\cdots \right){\rm d}t\cdot \left( {2\lambda - 2x_0^1} \right) \ge 0.$$ 根据$F$的一致椭圆性知 $$ \sum\limits_{i,j} {\int_0^1 {{F_{{p_{ij}}}}\left( {x,u,{u_{11}},\cdots ,{u_{ij - 1}},{u_{ij}} + t{\omega _{ij}},u_{ij + 1}^\lambda ,\cdots ,u_{NN}^\lambda } \right)} }{\rm d}t\cdot {\omega _{ij}}\left( {{x_0}} \right) \ge 0. $$ 于是由(3.4)式得 \begin{eqnarray} \label{jinhu9} \nonumber&&\left[\int_0^1 F_p\left( x,u\left(x_0 \right)+t\omega\left(x_0 \right),u_{ij}^\lambda \right){\rm d}t + \frac{\partial g}{\partial u}\left(\xi _1\left( x_0,\lambda \right),v\left(x_0\right) \right) \right]\omega \left(x_0 \right) \\ &\le&-\frac{\partial g}{\partial v}\left( {{u^\lambda }\left( {{x_0}} \right),{\eta _1}\left( {{x_0},\lambda } \right)} \right)\varphi \left( {{x_0}} \right).(3.6) \end{eqnarray} 注意到上式左端严格大于零(见引理2.1),又由条件(iii)知,$ - \frac{{\partial g}}{{\partial v}}\left( {{u^\lambda }\left( {{x_0}} \right),{\eta _1}\left( {{x_0},\lambda } \right)} \right) < 0$, 得$\varphi(x_0,\lambda)<0.$ 同样由于$\varphi(x)\geq 0$,$x\in \partial \Sigma_\lambda$,于是 $\varphi(x)$在$\Sigma_\lambda$内部取到负的最小值,即存在$x_1\in\Sigma_\lambda$, 使得$ \varphi \left( {{x_1}} \right) = \mathop {\min }\limits_{x \in \overline{\Sigma _\lambda }} \varphi \left( x \right) < 0.$

由引理2.1知 $$ \delta \left( \lambda \right) := \int_0^1 {{G_p}\left( {{x_1},v(x_1) + t{\varphi(x_1) },v_{ij}^\lambda \left( {{x_1}} \right)} \right){\rm d}t + \frac{{\partial f}}{{\partial v}}\left( {u\left( {{x_1}} \right),{\eta _2}\left( {{x_1},\lambda } \right)} \right)} < 0. $$ 且有 \begin{eqnarray} \label{jinhu10} \nonumber&&\left[{\int_0^1 {{G_p}\left( {{x_1},v(x_1) + t{\varphi(x_1)},v_{ij}^\lambda \left( {{x_1}} \right)} \right){\rm d}t + \frac{{\partial f}}{{\partial v}}\left( {u\left( {{x_1}} \right),{\eta _2}\left( {{x_1},\lambda } \right)} \right)} } \right]\varphi \left( {{x_1}} \right)\\ &\le&-\frac{{\partial f}}{{\partial u}}\left( {{\xi _2}\left( {{x_1},\lambda } \right),{v^\lambda }\left( {{x_1}} \right)} \right)\omega \left( {{x_1}} \right).(3.7) \end{eqnarray} 并且有$\omega(x_1)<0$.

记$$ \beta \left( \lambda \right) = \frac{{\partial g}}{{\partial v}}\left( {{u^\lambda }\left( {{x_0}} \right),{\eta _1}\left( {{x_0},\lambda } \right)} \right) >0,\ \gamma \left( \lambda \right) = \frac{{\partial f}}{{\partial u}}\left( {{\xi _2}\left( {{x_1},\lambda } \right),{v^\lambda }\left( {{x_1}} \right)} \right)> 0. $$

改写(3.6)和(3.7)式我们得到 \begin{eqnarray} \nonumber \omega\left( {{x_0}} \right) &\ge& -\frac{{\beta \left( \lambda \right)}}{{\alpha \left( \lambda \right)}}\varphi \left( {{x_0}} \right) \ge -\frac{{\beta \left( \lambda \right)}}{{\alpha \left( \lambda \right)}}\varphi \left( {{x_1}} \right)\\ \nonumber &\ge& \frac{{\beta \left( \lambda \right)\gamma \left( \lambda \right)}}{{\alpha \left( \lambda \right)\delta \left( \lambda \right)}}\omega \left( {{x_1}} \right) \ge \frac{{\beta \left( \lambda \right)\gamma \left( \lambda \right)}}{{\alpha \left( \lambda \right)\delta \left( \lambda \right)}}\omega \left( {{x_0}} \right), \end{eqnarray} 于是得 \begin{eqnarray} \label{jinhu11} \alpha \left( \lambda \right)\delta \left( \lambda \right) - \beta \left( \lambda \right)\gamma \left( \lambda \right) \le 0.(3.8) \end{eqnarray}

另一方面,由于此时$x_0,x_1\in \Sigma_{\lambda}^{\omega^-}\cap \Sigma_{\lambda}^{\varphi^-}$,利用引理2.2知 $\alpha \left( \lambda \right)\delta \left( \lambda \right) - \beta \left( \lambda \right)\gamma \left( \lambda \right)>0$. 这与(3.8)式矛盾. 因此假设错误.

故存在$ \lambda^*\in (-1,0]$,使得$\lambda\in (-1,\lambda^*]$时,有 \begin{eqnarray} \label{jinhu13} \omega(x,\lambda) \geq0,\ \varphi(x,\lambda)\geq0,~~\forall x \in {\Sigma _\lambda }(3.9) \end{eqnarray} 均成立 (第一步完成).

第二步 连续地增加$\lambda$的值, 只要不等式(3.9)成立, 就继续向右移动平面$T_\lambda$. 我们要证明如此移动下去, 平面$T_\lambda$不会在触到原点之前停下来. 更为具体地说,令 $$ \bar \mu = \sup \{ {\mu| {\omega ( {x,\lambda } ) \ge 0,~\varphi ( {x,\lambda } ) \ge 0,~ \forall x \in {\Sigma _\lambda }},~ \forall \lambda\leq \mu}\} ,$$ 则必有$\overline{\mu}\geq0$.

用反证法证明. 假设$\overline{\mu}<0$. 由$\overline{\mu}$的定义知, 当$\lambda<\overline{\mu}$时,有 $\omega(x,\lambda) \geq0 $和 $\varphi(x,\lambda)\geq0$,$x\in{\Sigma _{ \lambda }} $. 由于所考虑的函数对于$\lambda$ 都是连续的, 并且根据条件(iii)和(3.9)式,对于所有的$ x \in {\Sigma _{\bar \mu }} $,有 \begin{eqnarray} \label{jinhu14} \nonumber & & \int_0^1F_{x_1} \left(x_1+t\left(2\bar\mu-2x_1 \right),y,u^{\lambda},u_{ij}^\lambda \right){\rm d}t\cdot \left(2\bar\mu-2x_1\right)\\ \nonumber &&+ \sum\limits_{i,j}\int_0^1 F_{p_{ij}} \left(x,u,u_{ij}+t\omega_{ij}\left(x,\bar\mu\right)\right){\rm d}t\cdot \omega _{ij}\left(x,\bar \mu\right)\\ \nonumber&&+ \left[\int_0^1 F_p\left(x,u+t\omega\left(x,\bar\mu\right),u_{ij}^\lambda \right){\rm d}t+\frac{\partial g}{\partial u}\left(\xi _1\left(x,\bar\mu\right),v\right)\right]\omega\left(x,\bar\mu\right)\\ &=& -\frac{{\partial g}}{{\partial v}}\left( {{u^{\bar \mu }},{\eta _1}\left( {x,\bar \mu } \right)} \right)\varphi \left( {x,\bar \mu } \right)\le 0,(3.10)(3.10) \end{eqnarray} \begin{eqnarray} \label{jinhu15} \nonumber&&\int_0^1 {{G_{{x_1}}}} \left( {{x_1} + t\left( {2\bar \mu - 2{x_1}} \right)},y,v^\lambda,v_{ij}^\lambda \right){\rm d}t\cdot \left( {2\bar \mu - 2{x_1}} \right)\\ \nonumber&&+ \sum\limits_{i,j} {\int_0^1 {{G_{{p_{ij}}}}} } \left(x,v,{{v_{ij}} + t{\varphi _{ij}}\left( {x,\bar \mu } \right)} \right){\rm d}t\cdot {\varphi _{ij}}\left( {x,\bar \mu } \right) \\ \nonumber&&+ \left[{\int_0^1 {{G_p}\left(x,{v + t\varphi \left( {x,\bar \mu }\right)},v_{ij}^\lambda \right){\rm d}t + \frac{{\partial f}}{{\partial v}}\left( {u,{\eta _2}\left( {x,\bar \mu } \right)} \right)} } \right]\varphi \left( {x,\bar \mu } \right) \\ &= & - \frac{{\partial f}}{{\partial u}}\left( {{\xi _2}\left( {x,\bar \mu } \right),{v^{\bar \mu }}} \right)\omega \left( {x,\bar \mu } \right)\le 0.(3.11) \end{eqnarray}

根据条件(ii)和$\overline{\mu}\geq x_1$, (3.10)和(3.11)式的第一项非负,于是对于所有的$ x \in {\Sigma _{\bar \mu }} $,有 \begin{eqnarray} \label{jinhu16} \nonumber& &- \sum\limits_{i,j}\int_0^1 F_{p_{ij}} \left(x,u,u_{ij}+t\omega_{ij}\left(x,\bar\mu\right)\right){\rm d}t\cdot \omega _{ij}\left(x,\bar \mu\right)\\ & & -\left[\int_0^1 F_p\left(x,u+t\omega\left(x,\bar\mu\right),u_{ij}^\lambda \right){\rm d}t+\frac{\partial g}{\partial u}\left(\xi _1\left(x,\bar\mu\right),v\right)\right]\omega\left(x,\bar\mu\right)\geq 0,(3.13) \end{eqnarray} \begin{eqnarray} \label{jinhu17} \nonumber &&- \sum\limits_{i,j} {\int_0^1 {{G_{{p_{ij}}}}} } \left(x,v,{{v_{ij}} + t{\varphi _{ij}}\left( {x,\bar \mu } \right)} \right){\rm d}t\cdot {\varphi _{ij}}\left( {x,\bar \mu } \right) \\ \nonumber& & -\left[{\int_0^1 {{G_p}\left(x,{v + t\varphi \left( {x,\bar \mu }\right)},v_{ij}^\lambda \right){\rm d}t + \frac{{\partial f}}{{\partial v}}\left( {u,{\eta _2}\left( {x,\bar \mu } \right)} \right)} } \right]\varphi \left( {x,\bar \mu } \right)\geq 0.(3.12) \end{eqnarray}

需要注意的是,$\omega(x,\overline{\mu})\equiv0$是不成立的. 假设$\omega(x,\overline{\mu})\equiv0$,取边界上的点$u(-1,y)=0$, 又$\overline{\mu}<0$, 则对称点$(2\overline{\mu}+1,y)$在$S$内部且$u(2\overline{\mu}+1,y)=0$. 这和$u$是正解矛盾.

因为$\overline{\mu}<0$ 是使(3.9)式成立的最大区间的右端点,所以对任意满足$\lambda^k<0$,${\lambda ^k} \searrow \bar \mu$的单调减序列$\{\lambda_k\}$,存在 $ {x^k} \in \overline{\Sigma _{\lambda ^k}}$,使得$\omega \left( {{x^k},\ {\lambda ^k}} \right) < 0.$ 由于$ {x_k} \in S$(有界区域),必存在收敛子列,不妨设$x^k$即为收敛子列, 并且就是函数$\omega(x,\lambda^k)$在区域$\overline{\Sigma _{\lambda ^k}}$中的最小值点, 即 \begin{equation} \label{jinhu18} \left\{ \begin{array}{l} \omega (x^k,\lambda^k) = \min \limits_{x \in \overline{\Sigma _{\lambda ^k}}} \omega(x,\lambda^k)< 0,\\ {x^k} \to \bar x = (\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_N) \in \bar \Sigma_{\bar\mu},\;k \to \infty . \end{array} \right.(3.13) \end{equation}

由于$x^k$是函数$\omega(x,\lambda^k)$在区域$ {\bar \Sigma _{{\lambda ^k}}}$内部的最小值点,因此有$${\nabla _x}\omega \left( {{x^k},{\lambda ^k}} \right) = 0,\ \left\{ {{\omega _{ij}}\left( {{x^k},{\lambda ^k}} \right)} \right\} \ge 0.$$ 取$k\rightarrow\infty$极限,则得 \begin{eqnarray} \label{jinhu19} \omega \left( {\bar x,\bar \mu } \right) \le 0,\ {\nabla _x}\omega \left( {\bar x,\bar \mu } \right) = 0,\ \left\{ {{\omega _{ij}}\left( {\bar x,\bar \mu } \right)} \right\} \ge 0.(3.14) \end{eqnarray}

又由连续性可知,$\omega \left( {\bar x,\bar \mu } \right)\geq0$. 于是$\omega \left( {\bar x,\bar \mu } \right)=0$.

则$\overline{x}$的位置有三种情况: (a) 位于${\Sigma _{\bar \mu }}$的内部; (b) $\overline{x}$属于$T_{\overline{\mu}}$或${\bar \Sigma _{\bar \mu }} \cap \partial S$; (c) $ \bar x \in {T_{\bar \mu }} \cap \partial S$. 以下对这三种情况分别讨论.

(a)~ $\overline{x}$位于${\Sigma _{\bar \mu }}$的内部

对于${\Sigma _{\bar \mu }}$的内部的任意一点$a$, 可以选择一个边界光滑的区域$A$ ($\overline{A}$ 包含于${\Sigma _{\bar \mu }}$的内部),使得$a$和$\overline{x}$都位于$A$的内部. 在$A$上应用强极值原理(原定理条件在边界上函数等于0,此处在$\partial A$上,$\omega \left( {\bar x,\bar \mu } \right)\geq0$,定理仍能够成立),得到在$A$上$\omega \left( {\bar x,\bar \mu } \right)\equiv0$. $\omega \left( {\bar x,\bar \mu } \right)$在$a$点处等于0,由$a$的任意性得,在${\Sigma _{\bar \mu }}$的内部$\omega \left( {\bar x,\bar \mu } \right)\equiv0$. 由于边界条件$u(x)=0$,${\Sigma _{\bar \mu }}$的内部$u(x)>0$, 所以在$\partial {\Sigma _{\bar \mu }}$上$\omega \left( {\bar x,\bar \mu } \right)>0$. 由函数的连续性可得出矛盾.

(b)~ $\overline{x}$属于$T_{\overline{\mu}}$或${\bar \Sigma _{\bar \mu }} \cap \partial S$

取$r>0$充分小,可使某一个以$\overline{x}$为边界点的球${B_r} \subset {\Sigma _{\bar \mu }}$. 因为$ \omega \left( {x,\bar \mu } \right) > 0,\ \forall x \in {B_r}\left( {\bar x} \right),\ \omega \left( {\bar x,\bar \mu } \right) = 0$,应用经典的Hopf引理知 $\frac{{\partial\omega }}{{\partial n}}\left( {\bar x,\bar \mu } \right)\ne 0$, 所以${\nabla _x}\omega \left( {\bar x,\bar \mu } \right)\ne 0$, 与(3.14)式矛盾.

(c)~ $ \bar x \in {T_{\bar \mu }} \cap \partial S$.

将$\omega \left( {\bar x,\bar \mu } \right) = 0$代入(3.12)式得 \begin{eqnarray} \int_0^1 \sum\limits_{i,j} F_{p_{ij}} \left(\bar x,u,u_{ij}+t\omega_{ij}\left(\bar x,\bar\mu\right)\right)\cdot \omega _{ij}\left(\bar x,\bar \mu\right){\rm d}t \le 0.(3.15) \end{eqnarray} 由$F$满足一致椭圆条件,则有 $$\int_0^1 \sum\limits_{i,j} F_{p_{ij}} \left(\bar x,u,u_{ij}+t\omega_{ij}\left(\bar x,\bar\mu\right)\right)\cdot \omega _{ij}\left(\bar x,\bar \mu\right){\rm d}t \ge 0. $$ 因此有 \begin{equation} \label{jinhu20} \int_0^1 \sum\limits_{i,j} F_{p_{ij}} \left(\bar x,u,u_{ij}+t\omega_{ij}\left(\bar x,\bar\mu\right)\right)\cdot \omega _{ij}\left(\bar x,\bar \mu\right){\rm d}t = 0.(3.16) \end{equation} 由于$\{F_{p_{ij}}\}$是对称正定矩阵, $\{\omega_{ij}(\bar x,\overline{\mu})\}$是对称半正定矩阵, 则当且仅当$\{\omega_{ij}(\bar x,\overline{\mu})\}=0$时(3.16)式成立, 即$\omega_{ij}(\bar x,\overline{\mu})=0$, $i,j=1,2,\cdots,N$.

下面我们在$\overline{x}$处运用角点区域的Hopf引理(见引理2.3). 在$\overline{x}$处,$\partial \Sigma_{\overline{\mu}}$ 包含两个横向相交的$C^2$的超曲面$\rho=0,\rho=x_1-\bar\mu$和$\sigma=0,\sigma=x_2^2+\cdots+x_N^2-1$. 记$$ a_{ij}\left( \bar x,\bar \mu \right) = \int_{0}^1F_{p_{ij}} \left(\bar x,u,u_{ij}+t\omega_{ij}\left(\bar x,\bar\mu\right)\right){\rm d}t.$$ 下面我们证明$\sum\limits_{i,j=1}^Na_{ij}(\overline{x},\overline{\mu})\rho_i(\overline{x})\sigma_j(\overline{x})=0$. 即 $$ \sum_{j=2}^Na_{1j}(\overline{x},\overline{\mu}) x_j=0. $$

由条件(ii),如果${u_{12}} = \cdots = {u_{1N}} = 0$, 则${F_{{p_{1j}}}}\left( {x,u,{u_{ij}}} \right) = 0$,$j = 2,\cdots ,N$. 注意到,由于$\omega_{ij}(\bar x,\bar \mu)=0$, $$ a_{ij}\left( \bar x,\bar \mu \right) = \int_{0}^1F_{p_{ij}} \left(\bar x,u,u_{ij}\right){\rm d}t=F_{p_{ij}} \left(\bar x,u,u_{ij}\right). $$ 因此, 我们只需验证$${u_{1j}}\left( {\bar x} \right) = u_{1j}^\lambda \left( {\bar x,\bar \mu } \right) = 0,\ j=2,\cdots,N.$$

由于$\overline{x}\in T_{\overline{\mu}}$,所以$${u_{1j }}\left( {\bar x} \right) = - u_{1j }^\lambda \left( {\bar x,\bar \mu } \right) = - \frac{1}{2}{\omega _{1j }}\left( {\left( {\bar x,\bar \mu } \right)} \right) = 0,\ j = 2,3,\cdots N.$$ 所以在$\overline{x}$处 $\sum\limits_{i,j=1}^Na_{ij}(\overline{x},\overline{\mu})\rho_i(\overline{x})\sigma_j(\overline{x})=0$.

由于$u$是$C^2$的,引理2.3中$\theta_0=\frac{\pi}{2}$, 则可得对于任意指向$S$内部的方向$s$,$\frac{\partial }{{\partial s}}\omega \ne 0$或者${\left( {\frac{\partial }{{\partial s}}} \right)^2}\omega \ne 0.$ 取$s = -\frac{1}{\sqrt{2}}(1,x_2,\cdots,x_N)$.

利用(3.14)式和$\omega_{ij}(\bar{x},\bar{\mu})=0$,直接计算可知,在$\bar{x}$处有 $$ \frac{\partial \omega}{\partial s}(\bar{x})=-\frac{1}{\sqrt{2}}(\omega_1+x_2\omega_2+\cdots+x_N\omega_N)|_{\bar{x}}=0; $$ \begin{eqnarray*} \frac{\partial^2 \omega}{\partial s^2}(\bar{x})&=& \frac{1}{2}(\omega_{11}+\omega_{12}\bar x_2+\cdots+\omega_{1N}\bar x_N +\omega_{12}\bar x_2+\omega_{2}\bar x_2+\omega_{22}\bar x_2^2+\cdots+\omega_{2N}\bar x_2\bar x_N\\ & & +\cdots+\omega_{1N}\bar x_N+\omega_{2N}\bar x_2\bar x_N+\cdots+\omega_{NN}\bar x_N^2+\omega_N\bar x_N)|_{\bar{x}}\\ &=& 0. \end{eqnarray*} 而此与引理2.3矛盾.

综上所述,假设错误. 由此得$\overline{\mu}=0$.

并且由$\overline{\mu}$的定义知$$u(x_1,y)\leq u(-x_1,y),\ v(x_1,y)\leq v(-x_1,y),\ x_1<0.$$ (第二步完成).

第三步 我们可以从右侧开始移动平面,由于$F$和$G$在$x_1$方向上是对称的, 能够同样推出$\overline{\mu}=0$. 于是得$$u(x_1,y)\geq u(-x_1,y),\ v(x_1,y)\geq v(-x_1,y),\ x_1<0.$$

所以对于$(x_1,y)\in S,\ -1<x_1<0$, $$ u(x_1,y)=u(-x_1,y),\ v(x_1,y)=v(-x_1,y). $$ (第三步完成).

第四步 证明单调性. 由以上证明过程知,当$\lambda<0$时, $\omega(x,\lambda)\geq 0$和$\varphi(x,\lambda)\geq 0$. 又由于$\omega(x,\lambda)>0$,$x_1=-1$,$\omega(x,\lambda)$不恒等于0. 利用Hopf引理,在$T_\lambda$去掉$\partial S$的边界处, $\frac{{\partial \omega \left( {x,\lambda } \right)}}{{\partial {x_1}}} < 0,$ 又$ \frac{{\partial \omega \left( {x,\lambda } \right)}}{{\partial {x_1}}} = - 2{u_1}\left( {{x_1},y} \right).$ 所以, 当$x_1<0,y\in \Omega$时,有$u_1(x_1,y)>0$,$v_1(x_1,y)>0$ (第四步完成). 定理1.2证毕.

下面证明推论1.3.

注意到由于$u,v$为严格凹解,则$D^2u$,$D^2v$为严格负定矩阵. 因此对于二维情形下$-\det(D^2u)$和$-\det(D^2v)$满足椭圆型条件 (1.4). 不难验证满足推论1.3条件的方程组(1.5) 满足定理1.2的所有条件, 直接应用定理1.2即可.

参考文献
[1] Alexandrov A D. Uniqueness theorems for surfaces in the large I. Vestnik Leningrad Univ Math, 1956, 11: 5-17
[2] Serrin J. A symmetry problem in potential theory. Arch Rat Mach Anal, 1971, 43: 304-318
[3] Gidas B, Ni W M, Nirenberg L. Symmetry and related properties via the maximum principle. Comm Math Phys, 1979, 68: 209-243
[4] Luis A C, Gidas B, and Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Communications on Pure and Applied Mathematics, 1989, 42(3): 271-297
[5] Li C M. Local asymptotic symmetry of singular solutions to nonlinear elliptic equations. Inventiones Mathematicae, 1996, 123(2): 221-231
[6] Chen W X, Li C M. Classification of solutions of some nonlinear elliptic equations. Duke Math J, 1991, 63(3): 615-622
[7] Chen W X, Li C M. Methods on Nonlinear Ellipitic Equations. Missouri: American Institute of Mathematical Sciences, 2010
[8] Damascelli L, Pacella F, Ramaswamy M. Symmetry of ground states of p-Laplace equations via the moving plane method. Arch Rational Mach Anal, 1999, 148: 291-308
[9] Delano P. Radially symmetric boundary value problems for real and complex elliptic Monge-Ampere equations. Journal of Differential Equations, 1985, 58(3): 318-344
[10] Li C M. Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains. Communication in Partial Differential Equations, 1991, 16(2/3): 491-526
[11] Li C M. Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains. Communication in Partial Differential Equations, 1991, 16(4/5): 585-615
[12] Busca J, Sirakov B. Symmetry results for semilinear elliptic systems in the whole space. Journal of Differential Equations, 2000, 163: 41-56
[13] Ma L, Liu B Y. Symmetry results for decay solutions of elliptic systems in the whole space. Advances in Mathematics, 2010, 225(6): 3052-3063
[14] Liu B Y, Ma L. Symmetry results for decay solutions of semilinear elliptic systems on half spaces. Nonlinear Analysis Theory, Methods and Applications, 2012, 75(6): 3167-3177
[15] Liu B Y, Ma L. Symmetry results for elliptic Schrödinger systems on half spaces. Journal of Mathematical Analysis and Applications, 2013, 401(1): 259-268
[16] Figueiredo D G. Monotonicity and symmetry of solutions of elliptic systems in general domains. Nodea Nonlinear Differential Equations Appl. 1994, 1: 119-123
[17] Figueiredo D G, Yang J. Decay, symmetry and existence of positive solutions of semilinear elliptic systems. Nonlinear Anal, 1998, 33(3): 211-234
[18] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Beijing: Springer, 2003
[19] Ma L, Liu B Y. Symmetry results for classical solutions of Monge-Ampère systems on bounded planar domains. Journal of Mathematical Analysis and Applications, 2010, 369(2): 678-685
[20] Trudinger N S, Urbas J. The Dirichlet problem for the equation of prescribed Gauss curvature. Bull Aust Math Soc, 1983, 28: 217-231