数学物理学报  2015, Vol. 35 Issue (2): 264-273   PDF (264 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
雒秋明
Ramanujan循环和的推广及其应用
雒秋明    
重庆师范大学 数学科学学院 重庆 401331
摘要:推广了 Ramanujan 循环和并提供了一个简单证明方法. 也给出了结果的一些应用.
关键词Ramanujan 循环和     推广     简单证明     Theta 函数    
An Extension for Ramanujan's Circular Summation and Its Applications
Luo Qiuming    
Department of Mathematics, Chongqing Normal University, Chongqing Higher Education Mega Center, Huxi Campus, Chongqing 401331
Abstract: In this paper, we generalized the Ramanujan's circular summation formula and give an elementary proof of them. Some applications are also considered.
Key words: Ramanujan's circular summation     Extension     Elementary proof     Theta functions    
1 引言和主要结果

我们取 $q={\rm e}^{\pi{\rm i}\tau}$,$\mbox{Im} (\tau)>0$,$z,\tau \in {\Bbb C}$.

经典的 Jacobi theta 函数 $\vartheta_i\left(z|\tau\right), i=1,2,3,4,$ 定义如下 (参见文献 [3, 14, 26]): \begin{equation}\label{Theta1} \vartheta_1\left(z|\tau\right)=-{\rm i}q^{\frac14}\sum_{n=-\infty}^\infty\left(-1\right)^{n}q^{n\left(n+1\right)}{\rm e}^{\left(2n+1\right){\rm i}z},(1.1) \end{equation} \begin{equation} \label{Theta2} \vartheta_2\left(z|\tau\right)=q^{\frac14}\sum_{n=-\infty}^{\infty} q^{n\left(n+1\right)}{\rm e}^{\left(2n+1\right){\rm i}z},(1.2) \end{equation} \begin{equation} \label{Theta3} \vartheta_3\left(z|\tau\right)=\sum_{n=-\infty}^\infty q^{n^{2}}{\rm e}^{2n{\rm i}z},(1.3) \end{equation} \begin{equation} \label{Theta4} \vartheta_4\left(z|\tau\right)=\sum_{n=-\infty}^\infty \left(-1\right)^{n}q^{n^{2}}{\rm e}^{2n{\rm i}z}.(1.4) \end{equation}

在著名的《Ramanujan 丢失的笔记本》中第 54 页,印度天才数学家 Ramanujan 陈述了下列事实 (参见文献[22],[p54,Entry 9.1.1],[2],[p337]):

定理1.1 (Ramanujan 循环和) 若 $n$ 是任意的正整数且 $|ab| < 1$,我们有 \begin{equation}\label{Luo117} \sum_{-n/2<r \leq n/2} \bigg(\sum_{k=-\infty \atop k \equiv r ({\rm mod} \ n)} ^{\infty} a^{{k(k+1)}/{(2n)}}b^{{k(k-1)}/{(2n)}}\bigg)^n =f(a,b)F_n(ab),(1.5) \end{equation} 这里 \begin{equation}\label{Luo138} F_n(q):=1+2nq^{(n-1)/2}+\cdots,\qquad n \geq 3.(1.6) \end{equation}

他仅仅写出了上述公式但没有给出证明. Son 首次在他的论文中称公式 (1.5) 为 Ramanujan 循环和 (参见文献[2,p338]).

2006年,Chan,Liu 和 Ng 证明了 定理1.1 和 下边的 定理1.2 和 定理1.3 是等价的 (参见文献[13]).

定理1.2 (Ramanujan 循环和) 若 $n$ 是任意的正整数,则存在 $F_n(q)$ 使 \begin{equation}\label{Luo122} \sum_{k=0}^{n-1}q^{k^2}{\rm e}^{2k {\rm i}z}\vartheta^n_3(z+k\pi\tau|n\tau)= \vartheta_3(z|\tau)F_n(\tau).(1.7) \end{equation}

定理1.3 (Ramanujan 循环和) 若 $n$ 是任意的正整数,则存在 $G_n(\tau)$ 使 \begin{equation}\label{Luo124} \sum_{k=0}^{n-1}\vartheta^n_3\left(z+\frac{k\pi}{n}|\tau\right)=G_n(\tau)\vartheta_3(nz|n\tau).(1.8) \end{equation}

在《Ramanujan 丢失的笔记本》中 Ramanujan 循环和的研究是一个 有趣的话题. 关于 Ramanujan 循环和及其相关问题的研究吸引了国 内外众多的学者,其中不乏一些著名的数学家,例如美国的科学院院士 Andrews 和 Berndt 教授.这个研究主题的更多文献, 可参见文献[1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30].

最近,Chan 和 Liu 使用椭圆函数的理论和方法, 将 Ramanujan 循环和推广到下列形式:

定理1.4 (参见文献[12],[p1191,定理 4]) 若 $y_1,y_2,\cdots,y_n$ 是 $n$ 个任意复数且 $y_1+y_2+ \cdots+ y_n=0$,则 \begin{equation} \label{Luo131} \sum_{k=0}^{mn-1}\prod_{j=1}^{n} \vartheta_3\left(z+y_j+{k\pi\over mn}|\tau\right)= G_{m,n}(y_1,y_2,\cdots,y_n|\tau)\vartheta_3(mnz|m^2n \tau),(1.9) \end{equation} 这里 \begin{equation}\label{Luo132} G_{m,n}(y_1,y_2,\cdots,y_n|\tau) =mn \sum_{{r_1,\cdots,r_n=-\infty\atop r_1+\cdots+r_n=0}}^\infty q^{r_1^2+r_2^2+\cdots+r_n^2}{\rm e}^{2{\rm i}(r_1y_1+r_2y_2+\cdots+r_ny_n)}.(1.10) \end{equation}

本文进一步推广 Chan 和 Liu 的结果 定理1.4 并给出了一个基本证明方法. 我们的主要结果是下列定理.

定理1.5} 若 $m,n$ 是任意的正整数,$p$ 是任意的整数; $y_{1},y_{2}, \cdots,y_{n}$ 是任意复数,则

$\bullet$~ 当 $y_{1}+y_{2}+\cdots+y_{n}=\frac{p \pi}{m}$ 时,我们有 \begin{eqnarray}\label{Luo601} \sum_{k=0}^{mn-1}\prod_{j=1}^{n}\vartheta_3\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right)=R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n};m,n,p|\tau \right)\vartheta_3\left(mnz|m^2n \tau \right).(1.11) \end{eqnarray}

$\bullet$~

当 $y_{1}+y_{2}+\cdots+y_{n}=\frac{(2p+1) \pi}{2m}$ 时,我们有 \begin{eqnarray}\label{Luo603} \sum_{k=0}^{mn-1}\prod_{j=1}^{n}\vartheta_3\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right)=R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n};m,n,p|\tau \right)\vartheta_4\left(mnz|m^2n \tau \right),(1.12) \end{eqnarray} 这里 \begin{equation}\label{Luo602} R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n};m,n,p|\tau \right)=mn \sum_{{ r_{1}+\cdots+r_{n}=0\atop r_{1},\cdots,r_{n}=-\infty}}^{\infty} q^{r^{2}_{1}+\cdots+r^{2}_{n}}{\rm e}^{2{\rm i}\left(r_{1}y_{1}+\cdots+r_{n}y_{n}\right)},(1.13) \end{equation} \begin{equation} \label{Luo604} R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n};m,n,p|\tau \right)=mn \sum_{{r_{1}+\cdots+r_{n}=0\atop r_{1},\cdots,r_{n}=-\infty}}^{\infty}q^{r^{2}_{1}+\cdots+r^{2}_{n}}{\rm e}^{2{\rm i}\left(r_{1}y_{1}+\cdots+r_{n}y_{n}\right)}.(1.14) \end{equation}

注1.6 如果在 定理1.5 的 (1.11) 和 (1.13)式中取 $p=0$, 则我们直接得到 Chan 和 Liu 的结果 (定理1.4).

注1.7 尽管公式 (1.11) 和 (1.13) 的表示形式是完全一样的, 但由于复数 $y_{1},y_{2},\cdots,y_{n}$ 的约束条件不同, 实质上它们是不同的. 为了叙述的方便,我们仍然使用两个表达 式来分别表示它们.

2 定理1.5 的证明

$\bullet$~ 当 $y_{1}+y_{2}+\cdots+y_{n}=\frac{p \pi}{m}$ 时. 由 式(1.3),我们有 \begin{eqnarray}\label{Luo909} && \prod_{j=1}^{n}\vartheta_3\left(z+y_{j}+\frac{k \pi }{mn} \left|\tau \right.\right) \nonumber\\ &=&\sum_{r_{1},\cdots,r_{n}=-\infty}^{\infty} q^{r_{1}^{2}+\cdots+r_{n}^{2}} {\rm e}^{2(r_{1}+\cdots+r_{n}){\rm i}z} {\rm e}^{2{\rm i} (r_{1}y_{1}+\cdots+r_{n}y_{n})}{\rm e}^{\frac{2k\pi{\rm i}}{mn}(r_{1}+\cdots+r_{n})},(2.1) \end{eqnarray} \begin{equation} \label{Luo910} \vartheta_3\left(mnz|m^{2}n \tau \right)=\sum_{r=-\infty}^\infty q^{m^{2}nr^2}{\rm e}^{2{\rm i}mnrz}.(2.2) \end{equation} 将 式(2.1)和 (2.2) 代入 (1.11)式,我们得到 \begin{eqnarray}\label{Luo911} &&\sum_{k=0}^{mn-1}\sum_{r_{1},\cdots,r_{n}=-\infty}^{\infty}q^{r_{1}^{2}+\cdots+r_{n}^{2}}{\rm e}^{2(r_{1}+\cdots+r_{n}){\rm i}z}{\rm e}^{2{\rm i}\left(r_{1}y_{1}+\cdots+r_{n}y_{n}\right)}{\rm e}^{\frac{2k\pi{\rm i}}{mn}(r_{1}+\cdots+r_{n})} \nonumber\\ &=& R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,p|\tau \right) \sum_{r=-\infty}^{\infty}q^{m^2nr^{2}}{\rm e}^{2mnr{\rm i}z}.(2.3) \end{eqnarray}

我们使用 式(2.3) 定义 $R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,p;r|\tau \right)$ 如下 \begin{eqnarray}\label{Luo912} &&\sum_{k=0}^{mn-1}\sum_{r_{1},\cdots,r_{n} =-\infty}^{\infty}q^{r_{1}^{2}+\cdots+r_{n}^{2}} {\rm e}^{2(r_{1}+\cdots+r_{n}){\rm i}z}{\rm e}^{2{\rm i}\left(r_{1}y_{1}+\cdots +r_{n}y_{n}\right)}{\rm e}^{\frac{2k\pi{\rm i}}{mn}(r_{1}+\cdots+r_{n})} \nonumber\\ &=&\sum_{r=-\infty}^{\infty}q^{m^2nr^{2}}{\rm e}^{2mnr{\rm i}z}R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,p;r|\tau \right).(2.4) \end{eqnarray} 令 $r_1+\cdots+ r_n=N$ 并比较等式 (2.4) 两边 ${\rm e}^{2{\rm i}zN}$ 的系数,我们得到 \begin{equation}\label{Luo913} \sum_{{ r_{1}+\cdots+r_{n}=N\atop r_{1},\cdots,r_{n} =-\infty}}^{\infty}q^{r^{2}_{1}+\cdots+r^{2}_{n}} {\rm e}^{2{\rm i}\left(r_{1}y_{1}+\cdots+r_{n}y_{n}\right)} \sum_{k=0}^{mn-1}{\rm e}^{\frac{2k \pi{\rm i}N}{mn}} = q^{\frac{N^2}{n}}R_{3,3}^{(1)}\left(y_{1},y_{2}, \cdots,y_{n};m,n,p;\frac{N}{mn}|\tau \right).(2.5) \end{equation}

下边我们证明 $R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p;\frac{N}{mn}|\tau \right)$ 与 $N$ 没有关系,即证明 $$R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p;\frac{N}{mn}|\tau \right)=R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p|\tau \right).$$ 我们容易看到 \begin{eqnarray*} \sum_{k=0}^{mn-1}{\rm e}^{\frac{2k \pi{\rm i}N}{mn}}=\left \{ \begin{array}{ll} mn,& \mbox{当} \ N \equiv 0 \ {\rm mod} \ mn \ \mbox{时}, \\ 0,& \mbox{其它}. \end{array}\right. \end{eqnarray*}

由此可知,当 $N$ 不是 $mn$ 的整数倍时,我们有 $$R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p; \frac{N}{mn}|\tau \right)=R_{3,3}^{(1)}\left(y_{1},y_{2}, \cdots,y_{n} ;m,n,a,b,p|\tau \right)=0.$$

当 $N$ 是 $mn$ 的整数倍时,令$N={\ell}mn,\ {\ell} \in {\Bbb Z}$ 并注意到 $y_{1}+y_{2}+\cdots+y_{n}=\frac{p \pi}{m}$,由 (2.5)式得 \begin{eqnarray*} && R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p;\frac{N}{mn}|\tau \right) \\ &=&mn \sum_{{ r_{1}+\cdots+r_{n}=N \atop r_{1},\cdots,r_{n}=-\infty}}^{\infty}q^{r^{2}_{1}+\cdots+r^{2}_{n}-\frac{N^2}{n}}{\rm e}^{2{\rm i} \left(r_{1}y_{1}+\cdots+r_{n}y_{n}\right)}\\ & =&mn \sum_{{ r_{1}+\cdots+r_{n}={\ell}mn \atop r_{1},\cdots,r_{n}=-\infty}}^{\infty}q^{r^{2}_{1}+\cdots+r^{2}_{n}-{\ell}^2m^2n}{\rm e}^{2{\rm i} \left(r_{1}y_{1}+\cdots+r_{n}y_{n}\right)}\\ & =&mn \sum_{{ \mu_{1}+\cdots+\mu_{n}=0 \atop \mu_{1},\cdots,\mu_{n}=-\infty}}^{\infty}q^{(\mu_1+{\ell}m)^{2}+\cdots+(\mu_n+{\ell}m)^{2}-{\ell}^2m^2n}{\rm e}^{2{\rm i} \left((\mu_1+{\ell}m)y_{1}+\cdots+(\mu_n+{\ell}m)y_{n}\right)}\\ & =&mn \sum_{{ \mu_{1}+\cdots+\mu_{n}=0 \atop \mu_{1},\cdots,\mu_{n}=-\infty}}^{\infty}q^{\mu_1^2+\cdots+\mu_n^2} {\rm e}^{2{\rm i}(\mu_1y_{1}+\cdots+ \mu_ny_{n})}. \end{eqnarray*} 于是,我们有 $$R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p;\frac{N}{mn}|\tau \right)=R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p|\tau \right).$$ 即我们证明了 (1.11) 和 (1.13)式.

$\bullet$~ 当 $y_{1}+y_{2}+\cdots+y_{n}=\frac{(2p+1) \pi}{2m}$ 时. 由 (1.4)式,我们有 \begin{equation}\label{Luo914} \vartheta_4\left(mnz|m^{2}n \tau \right)=\sum_{r=-\infty}^\infty(-1)^r q^{m^{2}nr^2}{\rm e}^{2{\rm i}mnrz}.(2.6) \end{equation} 我们使用等式 (1.12) 来定义 $R_{3,3}^{(2)}\left(y_{1},y_{2}, \cdots,y_{n} ;m,n,a,b,p;r|\tau \right)$ 如下 \begin{eqnarray}\label{Luo915} &&\sum_{k=0}^{mn-1}\prod_{j=1}^{n}\vartheta_3\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right)\nonumber\\ &=&\sum_{r=-\infty}^\infty (-1)^rq^{m^{2}nr^2}{\rm e}^{2{\rm i}mnrz}R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p;r|\tau \right).(2.7) \end{eqnarray}

将 式(2.1)和 (2.6) 代入 (2.7)式,我们得到 \begin{eqnarray}\label{Luo916} &&\sum_{k=0}^{mn-1}\sum_{r_{1},\cdots,r_{n}= -\infty}^{\infty}q^{r_{1}^{2}+\cdots+r_{n}^{2}}{\rm e}^{2(r_{1} +\cdots+r_{n}){\rm i}z}{\rm e}^{2{\rm i}\left(r_{1}y_{1}+\cdots+r_{n}y_{n}\right)} {\rm e}^{\frac{2k\pi{\rm i}}{mn}(r_{1}+\cdots+r_{n})}\nonumber\\ &=&\sum_{r=-\infty}^\infty (-1)^rq^{m^{2}nr^2} {\rm e}^{2{\rm i}mnrz}R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p;r|\tau \right).(2.8) \end{eqnarray} 令 $r_1+\cdots+ r_n=M$ 并比较等式 (2.8) 两边 ${\rm e}^{2{\rm i}zM}$ 的系数,我们得到 \begin{eqnarray}\label{Luo917} &&\sum_{{ r_{1}+\cdots+r_{n}=M\atop r_{1},\cdots,r_{n}=-\infty}}^{\infty} q^{r^{2}_{1}+\cdots+r^{2}_{n}}{\rm e}^{2{\rm i}\left(r_{1}y_{1}+\cdots +r_{n}y_{n}\right)} \sum_{k=0}^{mn-1}{\rm e}^{\frac{2k \pi{\rm i}N}{mn}} \nonumber\\ &=&(-1)^{\frac{M}{mn}} q^{\frac{M^2}{n}}R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p;\frac{M}{mn}|\tau \right).(2.9) \end{eqnarray} 我们容易看到 \begin{eqnarray*} \sum_{k=0}^{mn-1}{\rm e}^{\frac{2k \pi{\rm i}M}{mn}}=\left \{ \begin{array}{ll} mn,& \mbox{当} \ M \equiv 0 \ {\rm mod} \ mn \ \mbox{时}, \\ 0,& \mbox{其它}. \end{array}\right. \end{eqnarray*} 由此可知,当 $M$ 不是 $mn$ 的整数倍时,我们有 $$R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p; \frac{M}{mn}|\tau \right)=R_{3,3}^{(2)}\left(y_{1},y_{2}, \cdots,y_{n} ;m,n,a,b,p|\tau \right)=0.$$

当 $M$ 是 $mn$ 的整数倍时,令$M=lmn,\ l \in {\Bbb Z}$ 并注意到 $y_{1}+y_{2}+\cdots+y_{n}=\frac{(2p+1) \pi}{2m}$,由 式(2.9) 得 \begin{eqnarray*} && R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n} ;m,n,a,b,p;\frac{M}{mn}|\tau \right) \\ &=&(-1)^l mn \sum_{{ r_{1}+\cdots+r_{n}=lmn \atop r_{1},\cdots,r_{n}=-\infty}}^{\infty}q^{r^{2}_{1}+\cdots+r^{2}_{n}-l^2m^2n}{\rm e}^{2{\rm i} \left(r_{1}y_{1}+\cdots+r_{n}y_{n}\right)}\\ &=&(-1)^l mn \sum_{{ \nu_{1}+\cdots+\nu_{n}=0 \atop \nu_{1},\cdots,\nu_{n}=-\infty}}^{\infty}q^{(\nu_1+lm)^{2}+\cdots+(\nu_n+lm)^{2}-l^2m^2n}{\rm e}^{2{\rm i} \left((\nu_1+lm)y_{1}+\cdots+(\nu_n+lm)y_{n}\right)}\\ &=&mn \sum_{{ \nu_{1}+\cdots+\nu_{n}=0 \atop \nu_{1},\cdots,\nu_{n}=-\infty}}^{\infty}q^{\nu_1^2+\cdots+\nu_n^2} {\rm e}^{2{\rm i}(\nu_1y_{1}+\cdots+ \nu_ny_{n})}. \end{eqnarray*} 于是,我们有 $$R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n};m,n,a,b,p; \frac{M}{mn}|\tau \right)=R_{3,3}^{(2)}\left(y_{1},y_{2}, \cdots,y_{n} ;m,n,a,b,p|\tau \right).$$ 即我们证明了 (1.12) 和 (1.14)式.

3 一些注释和应用

定理3.1 (定理1.5的交错和形式)%\label{Luo628}

若 $m,n$ 是任意的正整数,$p$ 是任意的整数; $y_{1},y_{2},\cdots,y_{n}$ 是任意复数,则

$\bullet$~ 当 $y_{1}+y_{2}+\cdots+y_{n}=\frac{p \pi}{m} $ 时,我们有 \begin{eqnarray}\label{Luo629} && \sum_{k=0}^{mn-1}(-1)^{k+p} \prod_{j=1}^{n}\vartheta_3\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right)\nonumber \\ &=& R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n};m,n,p;\tau \right) \vartheta_2\left(mnz|m^2n \tau \right),\ m \ \mbox{ 是偶数},(3.1) \end{eqnarray} \begin{eqnarray} \label{Luo629a} && \sum_{k=0}^{mn-1}(-1)^{k+p}\prod_{j=1}^{n}\vartheta_2\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right)\nonumber \\ &=& R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n};m,n,p;\tau \right) \ \vartheta_2\left(mnz|m^2n \tau \right),\ m \ \mbox{ 是奇数}.(3.2) \end{eqnarray}

$\bullet$~ 当 $y_{1}+y_{2}+\cdots+y_{n}=\frac{(2p+1) \pi}{2m}$ 时, 我们有 \begin{eqnarray}\label{Luo630} && \sum_{k=0}^{mn-1}(-1)^{k+p+1} \prod_{j=1}^{n}\vartheta_3\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right)\nonumber \\ &=& R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n};m,n,p;\tau \right) \vartheta_1\left(mnz|m^2n \tau \right), m \ \mbox{ 是偶数},(3.3) \end{eqnarray} \begin{eqnarray} \label{Luo630a} && \sum_{k=0}^{mn-1}(-1)^{k+p+1}\prod_{j=1}^{n}\vartheta_2\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right)\nonumber \\ &=& R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n};m,n,p;\tau \right) \vartheta_1\left(mnz|m^2n \tau \right), m \ \mbox{ 是奇数},(3.4) \end{eqnarray} 这里 \begin{eqnarray}\label{Luo631} R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n};m,n,p;\tau \right) &=& R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n};m,n,p;\tau \right) \nonumber \\ &= & mn \sum_{{r_{1}+\cdots+r_{n}=0\atop r_{1},\cdots,r_{n}=-\infty}}^{\infty}q^{r^{2}_{1}+\cdots+r^{2}_{n}}{\rm e}^{2{\rm i}\left(r_{1}y_{1}+\cdots+r_{n}y_{n}\right)}.(3.5) \end{eqnarray}

由 (1.3) 和 (1.4)式,我们容易得到 \begin{equation}\label{Theta29} \vartheta_3\left(z+\frac{n \pi \tau}{2}|\tau\right)=\left \{ \begin{array}{ll} q^{-\frac{n^2}{4}}{\rm e}^{-n{\rm i}z}\vartheta_3\left(z|\tau\right),& n \ \mbox{ 是偶数},\\ q^{-\frac{n^2}{4}}{\rm e}^{-n{\rm i}z}\vartheta_2\left(z|\tau\right),& n \ \mbox{ 是奇数}.(3.6) \end{array}\right. \end{equation} \begin{equation} \label{Theta15} \vartheta_3\left(z+{\pi\over2}|\tau \right)=\vartheta_4(z|\tau),\qquad \vartheta_3\left(z+{\pi\tau\over2}|\tau\right)=q^{-{1\over4}}{\rm e}^{-{\rm i}z}\vartheta_2\left(z|\tau\right),(3.7) \end{equation} \begin{equation} \label{Theta16} \vartheta_4\left(z+{\pi\over2}|\tau \right)=\vartheta_3(z|\tau),\qquad \vartheta_4\left(z+{\pi\tau\over2}|\tau\right)= {\rm i}q^{-{1\over4}}{\rm e}^{-{\rm i}z}\vartheta_1\left(z|\tau\right).(3.8) \end{equation} 在 定理1.5 中让 $z \longmapsto z+\frac{m\pi\tau}{2}$ 并使用 (3.6)式,经过计算我们得到 \begin{eqnarray}\label{Luo632} &&\prod_{j=1}^{n}\vartheta_3\left(z+y_{j}+\frac{k \pi }{mn}+\frac{m\pi\tau}{2}\left|\tau \right.\right) \nonumber \\ &=&\left \{ \begin{array}{ll} \displaystyle (-1)^k q^{-\frac{m^2n}{4}}{\rm e}^{-mn{\rm i}z}{\rm e}^{-m{\rm i}(y_1+\cdots+y_n)}\prod_{j=1}^{n}\vartheta_3\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right),& \!\! m \ \mbox{是偶数},\\ [4mm] \displaystyle (-1)^k q^{-\frac{m^2n}{4}}{\rm e}^{-mn{\rm i}z}{\rm e}^{-m{\rm i}(y_1+\cdots+y_n)}\prod_{j=1}^{n}\vartheta_2\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right),& \!\! m \ \mbox{是奇数}.(3.9) \end{array}\right. \end{eqnarray} 由 (3.7) 和 (3.8)式,我们有 \begin{equation}\label{Luo633} \vartheta_3\left(mnz+\frac{m^2n \pi \tau}{2}\left|m^2n \tau \right.\right) =q^{-\frac{m^2n}{4}}{\rm e}^{-mn{\rm i}z}\vartheta_2\left(mnz \left|m^2n \tau \right.\right),(3.10) \end{equation} \begin{equation} \label{Luo634} \vartheta_4\left(mnz+\frac{m^2n \pi \tau}{2}\left|m^2n \tau \right.\right) ={\rm i}q^{-\frac{m^2n}{4}}{\rm e}^{-mn{\rm i}z}\vartheta_1\left(mnz \left|m^2n \tau \right.\right).(3.11) \end{equation}

代替 式(3.9) 和 (3.10) 到 (1.11) 式 中并使用 $y_{1}+y_{2}+\cdots+y_{n}=\frac{p \pi}{m}$, 我们得到 (3.1) 和 (3.2)式.

代替式 (3.9) 和 (3.11) 到 (1.12) 式 中并使用$y_{1}+y_{2}+\cdots+y_{n}=\frac{(2p+1) \pi}{2m}$, 我们得到 (3.3) 和 (3.4)式.

推论3.2 %\label{Luo635} 若 $m,n$ 是任意的正整数; $y_{1},y_{2},\cdots,y_{n}$ 是任意复数,则

$\bullet$~ 当 $y_{1}+y_{2}+\cdots+y_{n}=0$ 时,我们有 \begin{eqnarray}\label{Luo636} && \sum_{k=0}^{mn-1}(-1)^{k} \prod_{j=1}^{n}\vartheta_3\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right) \nonumber\\ &=& R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n};m,n;\tau \right) \vartheta_2\left(mnz|m^2n \tau \right),\ m \ \mbox{ 是偶数},(3.12) \end{eqnarray} \begin{eqnarray} \label{Luo636a} && \sum_{k=0}^{mn-1}(-1)^{k} \prod_{j=1}^{n}\vartheta_2\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right)\nonumber\\ &=&R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n};m,n;\tau \right)\ \vartheta_2\left(mnz|m^2n \tau \right),\ m \ \mbox{ 是奇数},(3.13) \end{eqnarray}

$\bullet$~ 当 $y_{1}+y_{2}+\cdots+y_{n}=\frac{\pi}{2m}$ 时,我们有 \begin{eqnarray}\label{Luo637} && \sum_{k=0}^{mn-1}(-1)^{k+1} \prod_{j=1}^{n}\vartheta_3\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right)\nonumber\\ &=& R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n};m,n;\tau \right) \vartheta_1\left(mnz|m^2n \tau \right),\ m \ \mbox{ 是偶数},(3.14) \end{eqnarray} \begin{eqnarray} \label{Luo638} && \sum_{k=0}^{mn-1}(-1)^{k+1} \prod_{j=1}^{n}\vartheta_2\left(z+y_{j}+\frac{k \pi }{mn}\left|\tau \right.\right)\nonumber\\ &=&R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n};m,n;\tau \right) \vartheta_1\left(mnz|m^2n \tau \right),\ m \ \mbox{ 是奇数},(3.15) \end{eqnarray} 这里 \begin{eqnarray}\label{Luo639} R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n};m,n;\tau \right) &=& R_{3,3}^{(2)}\left(y_{1},y_{2},\cdots,y_{n};m,n;\tau \right) \nonumber \\ &= & mn \sum_{{r_{1}+\cdots+r_{n}=0\atop r_{1},\cdots,r_{n}=-\infty}}^{\infty}q^{r^{2}_{1}+\cdots+r^{2}_{n}}{\rm e}^{2{\rm i}\left(r_{1}y_{1}+\cdots+r_{n}y_{n}\right)}.(3.16) \end{eqnarray}

在 定理3.1 中取 $p=0$,我们得到 推论3.2.

注3.3 如果我们在公式 (3.16) 中作变换 $r_j \longmapsto r_j-\frac{m}{2},j=1,2,\cdots,n$,我们容易得到 \begin{equation}\label{pp3} R_{3,3}^{(1)}\left(y_{1},y_{2},\cdots,y_{n};m,n,p;\tau \right) = mnq^{-\frac{m^2n}{4}} \sum_{{r_{1}+\cdots+r_{n}=\frac{mn}{2}\atop r_{1},\cdots,r_{n}=-\infty}}^{\infty}q^{r^{2}_{1}+\cdots+r^{2}_{n}}{\rm e}^{2{\rm i}\left(r_{1}y_{1}+\cdots+r_{n}y_{n}\right)}.(3.17) \end{equation} 而公式 (3.12) 和 (3.17) 正是朱军明的主要结果 (参见文献 [29],[p120,定理 1.7]).

推论3.4 若 $m,n$ 是任意正整数,则 \begin{equation}\label{Luo641} \sum_{k=0}^{mn-1}(-1)^{k}\vartheta_3^{n}\left(z+\frac{k \pi }{mn}\left|\tau \right.\right)= R_{3,3}^{(1)}\left(m,n;\tau \right) \vartheta_2\left(mnz|m^2n \tau \right), \mbox{$m$ 是偶数},(3.18) \end{equation} \begin{equation} \label{Luo642} \sum_{k=0}^{mn-1}(-1)^{k} \vartheta_2^{n}\left(z+\frac{k \pi }{mn}\left|\tau \right.\right)= R_{3,3}^{(1)}\left(m,n;\tau \right) \vartheta_2\left(mnz|m^2n \tau \right), \mbox{$m$ 是奇数},(3.19) \end{equation} \begin{equation} \label{Luo643} \sum_{k=0}^{mn-1}(-1)^{k+1} \vartheta_3^{n}\left(z+\frac{\pi}{2mn}+\frac{k \pi }{mn}\left|\tau \right.\right)= R_{3,3}^{(2)}\left(m,n;\tau \right) \vartheta_1\left(mnz|m^2n \tau \right), \mbox{$m$ 是偶数},(3.20) \end{equation} \begin{equation} \label{Luo644} \sum_{k=0}^{mn-1}(-1)^{k+1} \vartheta_2^{n}\left(z+\frac{\pi}{2mn}+\frac{k \pi }{mn}\left|\tau \right.\right)=R_{3,3}^{(2)}\left(m,n;\tau \right) \vartheta_1\left(mnz|m^2n \tau \right), \mbox{$m$ 是奇数},(3.21) \end{equation} 这里 \begin{equation}\label{Luo645} R_{3,3}^{(1)}\left(m,n;\tau \right)=R_{3,3}^{(2)}\left(m,n;\tau \right) = mn \sum_{{r_{1}+\cdots+r_{n}=0\atop r_{1}, \cdots,r_{n}=-\infty}}^{\infty}q^{r^{2}_{1}+\cdots+r^{2}_{n}}.(3.22) \end{equation}

在 (3.12) 和 (3.13)式 中取 $y_{1}=y_{2}= \cdots=y_{n}=0$, 我们得到 (3.18) 和 (3.19)式. 在 (3.14) 和 (3.15) 式中,取 $y_{1}=y_{2}= \cdots=y_{n}=\frac{\pi}{2mn}$, 我们得到 (3.20) 和 (3.21)式.

注3.5 在 (3.19) 和 (3.21)式 中取 $n=1$ 并注意 $$R_{3,3}^{(1)}\left(m,1;\tau \right)=R_{3,3}^{(2)}\left(m,1;\tau \right)=m,$$ 我们有 \begin{equation}\label{Luo642x} \sum_{k=0}^{m-1}(-1)^{k} \vartheta_2\left(z+\frac{k \pi }{mn}\left|\tau \right.\right)=m \vartheta_2\left(mz|m^2 \tau \right),\qquad m \ \mbox{是奇数},(3.23) \end{equation} \begin{equation} \label{Luo644x} \sum_{k=0}^{m-1}(-1)^{k+1} \vartheta_2\left(z+\frac{\pi}{2m} +\frac{k \pi}{m}\left|\tau \right.\right)= m \vartheta_1 \left(mz|m^2 \tau \right),\qquad m \ \mbox{是奇数}.(3.24) \end{equation} 这正是 $\vartheta_2(z|\tau)$ 的加法分解.

注3.6 公式 (3.18) 和 (3.20) 是 Boon 结果的一个推广. 如果 在 (3.18) 和 (3.20) 式中分别取 $n=1$ 并注意 $R_{3,3}^{(1)}\left(m,1;\tau \right)=m$,我们有 \begin{equation}\label{Luo671} \sum_{k=0}^{m-1}(-1)^k \vartheta_3 \left(z+\frac{k \pi }{m}\left|\tau \right.\right)= m \vartheta_2\left(mz|m^2 \tau \right),\qquad \mbox{$m$ 是偶数},(3.25) \end{equation} \begin{equation} \label{Luo672} \sum_{k=0}^{m-1}(-1)^{k+1} \vartheta_3\left(z+\frac{\pi}{2m}+\frac{k \pi }{m}\left|\tau \right.\right)= m \vartheta_1\left(mz|m^2 \tau \right),\qquad \mbox{$m$ 是偶数}.(3.26) \end{equation} 公式 (3.25) 和 (3.26) 正是 Boon 等人的主要结果 (参见文献[6,p3440,(8)]). 注意 Boon 等人的公式有一个印刷错误, 在公式 (3.26) 中我们已经作了修正.

注3.7 如果 在 (3.19)式 中取 $m=1$,让 $z \longmapsto \frac{\pi}{2}$并使用 \begin{equation}\label{Theta24} \vartheta_2\left(z+\frac{n \pi}{2}|\tau\right)=\left \{ \begin{array}{ll} {\rm i}^n \vartheta_2\left(z|\tau\right),& n \ \mbox{是偶数},\\ -{\rm i}^{n-1} \vartheta_1\left(z|\tau\right),& n \ \mbox{是奇数}.(3.27) \end{array}\right. \end{equation} 我们有 \begin{equation}\label{Luo646} \sum_{k=0}^{n-1}(-1)^k \vartheta_1^{n}\left(z+\frac{k \pi }{n}\left|\tau \right.\right)=\left \{ \begin{array}{ll} {\rm i}^n G \left(n;\tau \right)\vartheta_2\left(nz|n \tau \right),& n \ \mbox{是偶数},\\ {\rm i}^{n-1} G\left(n;\tau \right)\vartheta_1\left(nz|n\tau \right),& n \ \mbox{是奇数}, \end{array}\right.(3.28) \end{equation} 这里 $$G \left(n;\tau \right)=n \sum_{{r_{1}+\cdots+r_{n}=0\atop r_{1}, \cdots,r_{n}=-\infty}}^{\infty}q^{r^{2}_{1}+\cdots+r^{2}_{n}}.$$ 这正是 Chan 等人结果的一个推广 (参见文献 [13],[p634,定理 4.2]).

参考文献
[1] Ahlgren S. The sixth, eighth, ninth and tenth powers of Ramanujan theta function. Proc Amer Math Soc, 2000, 128: 1333-1338
[2] Andrews G E, Berndt B C. Ramanujan's Lost Notebook. Part III. New York: Springer-Verlag, 2012
[3] Bellman R. A Brief Introduction to Theta Functions. New York: Holt, Rinehart and Winston, 1961
[4] Berndt B C. Ramanujan's Notebooks. Part III. New York: Springer-Verlag, 1991
[5] Berndt B C. Ramanujan's Notebooks. Part V. New York: Springer-Verlag, 1998
[6] Boon M, Glasser M L, Zak J, Zucker I J. Additive decompositions of v-functions of multiple arguments. J Phys A: Math Gen, 1982, 15: 3439-3440
[7] Borwein J M, Borwein P B. A cubic counterpart of Jacobi's identity and the AGM. Trans Amer Math Soc, 1991, 323: 691-701
[8] Cai Y, Chen S, Luo Q M. Some circular summation formulas for the theta functions. Bound Value Probl, DOI: 10.1186/1687-2770-2013-59
[9] Cai Y, Bi Y Q, Luo Q M. Some new circular summation formulas of theta functions. Integral Transform Spec Funct, 2014, 25: 497-507
[10] Zhou Y, Luo Q M. Circular summation formulas for theta function v4(z|τ). Adv Difference Equ, DOI: 10.1186/1687-1847-2014-243
[11] Liu X F, Luo Q M. A note for alternating Ramanujan's circular summation formula. Forum Mathematicum, DOI: 10 1515/FORUM.2013.0148
[12] Chan S H, Liu Z G. On a new circular summation of theta functions. J Number Theory, 2010, 130: 1190-1196
[13] Chan H H, Liu Z G, Ng S T. Circular summation of theta functions in Ramanujan's lost notebook. J Math Anal Appl, 2006, 316: 628-641
[14] Chandrasekharan K. Elliptic Functions. Berlin, Heidelberg: Springer-Verlag, 1985
[15] Chua K S. The root lattice An* and Ramanujan's circular summation of theta functions. Proc Amer Math Soc, 2002, 130: 1-8
[16] Chua K S. Circular summation of the 13th powers of Ramanujan's theta function. Ramanujan J, 2001, 5: 353-354
[17] Gasper G, Rahma M. Basic Hypergeometric Series. Cambridge: Cambridge Unversity Press, 2004
[18] Liu Z G. Some inverse relations and theta function identities. Int J Number Theory, 2012, 8: 1977-2002
[19] Montaldi E, Zucchelli G. Additive decomposition for the product of two v3 functions and modular equations. J Math Phys, 1989, 30: 2012-2015
[20] Murayama T. On an identity of theta functions obtained from weight enumerators of linear codes. Proc Japan Acad, Ser A, 1998, 74: 98-100
[21] Ono K. On the circular summation of the eleventh powers of Ramanujan's theta function. J Number Theory, 1999, 76: 62-65
[22] Ramanujan S. The Lost Notebook and Other Unpublished Papers. New Delhi: Narosa, 1988
[23] Rangachari S S. On a result of Ramanujan on theta functions. J Number Theory, 1994, 48: 364-372
[24] Shen L C. On the additive formula of the theta functions and a collection of Lambert series pertaining to the modular equations of degree 5. Trans Amer Math Soc, 1994, 345: 323-345
[25] Son S H. Circular summation of theta functions in Ramanujan's lost notebook. Ramanujan J, 2004, 8: 235-272
[26] Whittaker E T, Watson G N. A Course of Modern Analysis. Cambridge: Cambridge University Press, 1927
[27] Xu P. An elementary proof of Ramanujan's circular summation formula and its generalizations. Ramanujan J, 2012, 27: 409-417
[28] Zeng X F. A generalized circular summation of theta function and its application. J Math Anal Appl, 2009, 356: 698-703
[29] Zhu J M. An alternate circular summation formula of theta functions and its applications. Appl Anal Discrete Math, 2012, 6: 114-125
[30] Zhu J M. A note on a generalized circular summation formula of theta functions. J Number Theory, 2012, 132: 1164-1169