在实际力学系统中,柔性梁(柔性结构)的镇定和稳定是一个十分重要的控制问题. 基于梁、弦、板等系统在空间科学及机器人学中的广泛应用, 由智能材料制成的补钉黏贴在或嵌入到基底结构中作为主动或被动的阻尼器, 为了获得最优配置(最佳控制)结果,往往需要知道系统能量衰减与系统参数之间的定量关系, 许多实际系统的控制作用往往取决于系统的这一指标. 为了满足科技日益发展的需要, 因此对各类系统模型进行稳定性分析是一件十分有意义的事情.
近二十年来,随着应用的发展和技术要求的不断提高, 驱使国内外许多数学和力学工作者研究各种具有不同类型阻尼的Euler-Bernoulli 梁, Timoshenko梁,Rayleigh梁以及Petrovsky板等系统(耦合系统)的稳定性. 例如: 文献[1, 2]研究的是非线性阻尼耦合振动的Petrovsky系统, 文献[3, 4, 5, 6, 7, 8, 9, 10]考虑的是各种具有不同阻尼的弦、梁及波系统的稳定性. 然而局部阻尼在阻尼器的边缘往往会发生骤变(不连续)现象,在数学上, 这种不连续现象会对系统的稳定性分析产生许多困难. 这些困难往往会激发学者对这些问题的研究兴趣. 文献[11] 研究的是具有全局阻尼Petrovsky 系统稳定性, 本文将文献[11]的结果推广到更一般的局部记忆阻尼情形. 我们研究的是一类具有局部记忆阻尼弱耦合梁-弦系统的能量估计. 更精确地说,考虑如下的初边值问题
本文首先假设
(H1) 弱耦合系数$a(x)\in L^{\infty}(0,L)$.
(H2) 局部阻尼系数$b_{1}(x)\in C^{2}(0,L),b_{2}(x)\in C^{1}(0,L)$. 且满足: 对于 $i=1,2$, 当$x\in(0,\alpha)$ 时,$b_{i}(x)=0$; 当$x\in(\alpha,L)$时, $b_{i}(x)\geq C>0$,其中$C$为正常数.
(H3) 松弛函数$g_{i}(s),i=1,2$ 满足如下条件
$(g1)$~ $ g_{i}(s)\in C^{2}(0,+\infty)\cap C[0,+\infty)$和 $ g_{i}(s)\in L^{1}(0,+\infty)$;
$(g2)$~ 在$(0,+\infty)$上,$g_{i}>0,g_{is}<0,g_{iss}>0$;
$(g3)$~ 在$(0,+\infty)$上,存在$k_{2}>k_{1}>0$使得$-k_{1}g_{is} $(g4)$~ $g_{i}(\infty)=0$. 本文的方法源于文献[5]和[9]. 在合适的假设下,应用经典结果[12]和$C_{0}$-半群生成元的预解式 在虚轴上的有界性频域结果[13],并且运用线性算子半群理论、分片乘子技巧以及矛盾的讨论 得到了系统(1)的适定性和能量是一致指数衰减性质. 2 预备知识与主要结果 为了研究系统(1)的能量衰减性质,我们进一步假设 (H4) \begin{equation}\|a\|_{L^{\infty}(0,L)}<\frac{1}{2\sqrt{c_{1}c_{2}}}, \label{2}\end{equation} (2) 这里$c_{1},c_{2}$是两个正常数,同时 $$\|u\|_{H^{2}(0,L)}^{2}\leq c_{1}\int_{0}^{L}|u''|^{2}{\rm d}x,\quad \forall u\in H_{0}^{2}(0,L),$$ $$\|u\|_{H^{1}(0,L)}^{2}\leq c_{2}\int_{0}^{L}|u'|^{2}{\rm d}x,\quad \forall u\in H_{0}^{1}(0,L).$$ 为了方便起见,记$\|a\|_{L^{\infty}(0,L)}$为$\|a\|_{\infty}$. (H5) \begin{equation}\gamma_{i}=1-\frac{3}{2}\sqrt{c_{1}c_{2}}\|a\|_{\infty} -\frac{1}{2}\|b_{i}\|\int_{0}^{+\infty}|g_{is}(s)|{\rm d}s>0,\quad i=1,2, \label{3}\end{equation} (3) 这里$\|b_{i}\|=\sup\limits_{x\in[0,L]}\left|b_{i}(x)\right|,i=1,2$. 由(H4)得 \begin{eqnarray} \int_{0}^{L}a(u_{1}\overline{u}_{2}+\overline{u}_{1}u_{2}){\rm d}x &\geq&-\|a\|_{\infty} \int_{0}^{L}\left[\sqrt{\frac{c_{2}}{c_{1}}}|u_{1}|^{2} +\sqrt{\frac{c_{1}}{c_{2}}}|u_{2}|^{2}\right]{\rm d}x \nonumber\\ &\geq &-\sqrt{c_{1}c_{2}}\|a\|_{\infty} \int_{0}^{L}\left[|u''_{1}|^{2} +|u'_{2}|^{2}\right]{\rm d}x.\end{eqnarray} (4) 定义系统(1)在时刻$t$的能量为 \begin{eqnarray} E(t)&=&\frac{1}{2}\int_{0}^{L}\left(|u_{1t}|^{2}+|u_{2t}|^{2}+|u''_{1}|^{2}+|u'_{2}|^{2}\right){\rm d}x +\frac{1}{2}\int_{0}^{L}a(u_{1}\overline{u}_{2}+\overline{u}_{1}u_{2}){\rm d}x \nonumber\\ &&+\frac{1}{2}\int_{0}^{+\infty}|g_{1s}|\int_{0}^{L}b_{1}|y''_{1}|^{2}{\rm d}x{\rm d}s +\frac{1}{2}\int_{0}^{+\infty}|g_{2s}|\int_{0}^{L}b_{2} |y'_{2}|^{2}{\rm d}x{\rm d}s, \end{eqnarray} (5) 其中$y_{1}(x,t,s)=u_{1}(x,t)-u_{1}(x,t-s), y_{2}(x,t,s)=u_{2}(x,t)-u_{2}(x,t-s)$. 引入函数空间 $$H_{0}^{2}(0,L)=\{u|u\in H^{2}(0,L),u(0)=u'(0)=u(L)=u'(L)=0\},$$ $$ H_{0}^{1}(0,L)=\{u|u\in H^{1}(0,L),u(0)=u(L)=0\},$$ 其中$H^{k}(0,L)$是$k$阶Sobolev空间(参见文献[14]). $$V=H_{0}^{2}(0,L)\times H_{0}^{1}(0,L),\quad H=L^{2}(0,L)\times L^{2}(0,L),$$ 赋予范数 $$\|(u_{1},u_{2})\|_{V}^{2}=\int_{0}^{L}(|u''_{1}|^{2}+|u'_{2}|^{2}){\rm d}x +\int_{0}^{L}a(u_{1}\overline{u}_{2}+\overline{u}_{1}u_{2}){\rm d}x, $$ $$\|(v_{1},v_{2})\|_{H}^{2}=\int_{0}^{L}(|v_{1}|^{2}+|v_{2}|^{2}){\rm d}x.$$ 同时,记 $$W_{1}=\left\{v|v,v',v''\in L^{2}(\delta,L),\forall\delta\in(\alpha,L), \sqrt{b_{1}}v''\in L^{2}(\alpha,L),v(L)=0\right\},$$ $$W_{2}= \left\{v|v,v'\in L^{2}(\delta,L),\forall\delta\in(\alpha,L), \sqrt{b_{2}}v'\in L^{2}(\alpha,L),v(L)=0\right\},$$ $$ Y=L^{2}(0,+\infty; W_{1})\times L^{2}(0,+\infty; W_{2}),$$ $$\|(y_{1},y_{2})\|_{Y}^{2}=\int_{0}^{+\infty}|g_{1s}|\int_{0}^{L}b_{1}|y''_{1}|^{2}{\rm d}x{\rm d}s+ \int_{0}^{+\infty}|g_{2s}|\int_{0}^{L}b_{2}|y'_{2}|^{2}{\rm d}x{\rm d}s.$$ 因此$V,H,Y$均为实(复) Hilbert空间,且具有范数$\|(\cdot,\cdot)\|_{V},\|(\cdot,\cdot)\|_{H},\|(\cdot,\cdot)\|_{Y}$. 设${{\cal H}}=V\times H\times Y$,赋予范数 $$\|Z\|_{{\cal H}}^{2}=\|(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\|_{{\cal H}}^{2} =\|(u_{1},u_{2})\|_{V}^{2}+\|(v_{1},v_{2})\|_{H}^{2}+\|(y_{1},y_{2})\|_{Y}^{2},$$ 那么${\cal H}$也是实(复) Hilbert空间. 接下来,设$Z=(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})$,在 ${\cal H}$中定义线性算子${\cal A}$如下 \begin{equation}D({\cal A})=\left\{\begin{array}{lll} Z\in{{\cal H}}|(v_{1},v_{2})\in V ,\quad (y_{1s},y_{2s})\in Y, \quad y_{1}(\cdot,0)=y_{2}(\cdot,0)=0,\\[2mm] u''_{1}-\int_{0}^{+\infty}g_{1s}b_{1}y''_{1}{\rm d}s\in H^{2}(0,L),\quad -u'_{2}+\int_{0}^{+\infty}g_{2s}b_{2}y'_{2}{\rm d}s\in H^{1}(0,L). \end{array}\right\}\label{6}\end{equation} (6) \begin{equation}{\cal A}Z=\left(\begin{array}{lll} v_{1},v_{2},-au_{2}-u_{1}^{(4)} +\int_{0}^{+\infty}g_{1s}(b_{1}y''_{1})''{\rm d}s,\\[3mm] -au_{1}+u''_{2}-\int_{0}^{+\infty}g_{2s}(b_{2}y'_{2})'{\rm d}s, v_{1}-y_{1s},v_{2}-y_{2s}\end{array}\right).\label{7}\end{equation} (7) 因此,可以将系统(1)改写成${\cal H}$上的抽象Cauchy问题 $$\frac{{\rm d}Z(t)}{{\rm d}t}={\cal A}Z(t),$$ 其中$Z=(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2}),$ $ Z_{0}=Z(0)=(u_{1}^{0},u_{2}^{0},v_{1}^{0},v_{2}^{0},0,0)$. 现在我们叙述本文的主要结果. $bf 定理 2.1$ 如果假设(H1)-(H5)成立, 那么${\cal A}$生成${\cal H}$上压缩$C_{0}$ -半群${\rm e}^{{\cal A}t}$. 进一步,\\ 若$(u_{1}^{0},u_{2}^{0},v_{1}^{0},v_{2}^{0},0,0)\in D({\cal A})$, 则系统(1)存在唯一的强解; 若$(u_{1}^{0},u_{2}^{0},v_{1}^{0},v_{2}^{0},0,0)\in {{\cal H}}$, 则系统(1)存在唯一的弱解. $bf 定理 2.2$ 如果假设(H1)-(H5)成立, 那么系统(1)的能量是一致指数衰减的. 3 适定性和谱性质 本节我们先给出系统(1)的适定性,进一步给出线性算子${\cal A}$的谱性质. 类似文献[5]的定理2.1,我们先证明一个有用的引理. $\bf 引理 3.1$ 假设$g_{1}(\cdot),g_{2}(\cdot)$满足条件(g1)-(g4), $(l,\tau)\in Y,{\rm Re}\lambda>-\frac{k_{1}}{2}$, 若记 $$y_{1}(x,s)=\int_{0}^{s}{\rm e}^{-\lambda(s-t)}l(x,t){\rm d}t,\quad y_{2}(x,s)=\int_{0}^{s}{\rm e}^{-\lambda(s-t)}\tau(x,t){\rm d}t, $$ 则 $$(y_{1},y_{2})\in Y\cap{C([0,+\infty); W_{1})\times C([0,+\infty); W_{2})}, \quad (y_{1s},y_{2s})\in Y.$$ 且对某个$\delta\in(0,2{\rm Re}\lambda+k_{1})$,有 \begin{equation}\|(y_{1},y_{2})\|_{Y}^{2}\leq\frac{1}{\delta(2{\rm Re}\lambda+k_{1}-\delta)} \|(l,\tau)\|_{Y}^{2}\label{8}\end{equation} (8) 和 \begin{equation}{\rm Re}\langle(y_{1s},y_{2s}),(y_{1},y_{2})\rangle_{Y} \geq\frac{k_{1}}{2}\|(y_{1},y_{2})\|_{Y}^{2}.\label{9}\end{equation} (9) $\bf 证$ 首先由文献[5,定理2.1]知: 当$s\downarrow0$或者$s\uparrow \infty$时, \begin{equation}|sg_{is}(s)|\rightarrow0,\quad i=1,2. \label{10}\end{equation} (10) 其次,对于任意的$T>0$,有$y_{i}\in L^{2}(0,T; W_{i}),i=1,2$. 因此,由$y_{i}~(i=1,2)$的定义,我们有 $$y_{1}\in C(0,+\infty; W_{1})\bigcap H^{2}(0,T; W_{1}); \quad y_{2}\in C(0,+\infty; W_{2})\bigcap H^{1}(0,T; W_{2}).$$ 且当$s\in(0,+\infty)$时有 \begin{equation}y_{1s}+\lambda y_{1}=l,\quad y_{2s}+\lambda y_{2} =\tau.\label{11}\end{equation} (11) 注意到$\left|\int_{0}^{s}y''_{1s}(x,r){\rm d}r\right|^{2}\leq s\int_{0}^{s}\left|y''_{1s}(x,r)\right|^{2}{\rm d}r$和 $\left|\int_{0}^{s}y'_{2s}(x,r){\rm d}r\right|^{2}\leq s\int_{0}^{s}\left|y'_{2s}(x,r)\right|^{2}{\rm d}r$. 于是 \begin{eqnarray} &&|g_{1s}(s)| \left[\int_{\alpha}^{L}b_{1}\left|y''_{1}(x,s)\right|^{2}{\rm d}x\right]^{\frac{1}{2}}+ |g_{2s}(s)|\left[\int_{\alpha}^{L}b_{2}\left|y'_{2}(x,s)\right|^{2}{\rm d}x\right]^{\frac{1}{2}} \nonumber\\ &=&|g_{1s}(s)|\left[\int_{\alpha}^{L}b_{1}\left|\int_{0}^{s}y''_{1s}(x,r){\rm d}r\right|^{2}{\rm d}x\right]^{\frac{1}{2}}+ |g_{2s}(s)|\left[\int_{\alpha}^{L}b_{2}\left|\int_{0}^{s}y'_{2s}(x,s){\rm d}r\right|^{2}{\rm d}x\right]^{\frac{1}{2}} \nonumber\\ &\leq& s^{\frac{1}{2}}|g_{1s}(s)|\left[\int_{\alpha}^{L}b_{1}\int_{0}^{s}\left|y''_{1s}(x,r) \right|^{2}{\rm d}r {\rm d}x\right]^{\frac{1}{2}}+ s^{\frac{1}{2}}|g_{2s}(s)|\left[\int_{\alpha}^{L}b_{2} \int_{0}^{s}\left|y'_{2s}(x,s)\right|^{2}{\rm d}r{\rm d}x\right]^{\frac{1}{2}} \nonumber\\ &\leq &\left|sg_{1s}\right|^{\frac{1}{2}}\left[\int_{0}^{s}|g_{1s}(s)| \int_{\alpha}^{L}b_{1}\left|y''_{1s}\right|^{2} {\rm d}x{\rm d}r\right]^{\frac{1}{2}}+ \left|sg_{1s}\right|^{\frac{1}{2}}\left[\int_{0}^{s}|g_{2s}(s)|\int_{\alpha}^{L}b_{2} \left|y'_{2s}(x,s)\right|^{2}{\rm d}x{\rm d}r\right]^{\frac{1}{2}} \nonumber\\ &\leq &\left|s\widetilde{g}_{s}\right|^{\frac{1}{2}} \left\|(y_{1s},y_{2s})\right\|_{Y}\rightarrow0\quad (s\downarrow0), \label{12} \end{eqnarray} (12) 其中$\left|\widetilde{g}_{s}\right|=\max \left\{\left|g_{1s}\right|,\left|g_{2s}\right|\right\}$. 由条件(g2)和(g3)得,对$T>\varepsilon>0$, \begin{eqnarray} &&-k_{1}\int_{\varepsilon}^{T}g_{1s}\int_{\alpha}^{L}b_{1}\left|y''_{1}(x,s)\right|^{2}{\rm d}x{\rm d}s -k_{1}\int_{\varepsilon}^{T}g_{2s}\int_{\alpha}^{L}b_{2}\left|y'_{2}(x,s)\right|^{2}{\rm d}x{\rm d}s \nonumber\\ &\leq & \int_{\varepsilon}^{T}g_{1ss}\int_{\alpha}^{L}b_{1}\left|y''_{1}(x,s)\right|^{2}{\rm d}x{\rm d}s +\int_{\varepsilon}^{T}g_{2ss}\int_{\alpha}^{L}b_{2}\left|y'_{2}(x,s)\right|^{2}{\rm d}x{\rm d}s \nonumber\\ &=&g_{1s}(T)\int_{\alpha}^{L}b_{1}\left|y''_{1s}(x,T)\right|^{2} {\rm d}x -g_{1s}(\varepsilon)\int_{\alpha}^{L}b_{1}\left|y''_{1s}(x,\varepsilon)\right|^{2}{\rm d}x \nonumber\\ &&+g_{2s}(T)\int_{\alpha}^{L}b_{2}\left|y'_{2s}(x,T)\right|^{2} {\rm d}x -g_{2s}(\varepsilon)\int_{\alpha}^{L}b_{2}\left|y'_{2s}(x,\varepsilon)\right|^{2}{\rm d}x \nonumber\\ &&-2{\rm Re}\left(\int_{\varepsilon}^{T}g_{1s}\int_{\alpha}^{L}b_{1}y''_{1s}\overline{y}''_{1}{\rm d}x{\rm d}s\right) -2{\rm Re}\left(\int_{\varepsilon}^{T}g_{2s}\int_{\alpha}^{L}b_{2}y'_{2s}\overline{y}'_{2}{\rm d}x{\rm d}s\right) \nonumber\\ &\leq& -2{\rm Re}\left(\int_{\varepsilon}^{T}g_{1s}\int_{\alpha}^{L}b_{1}y''_{1s}\overline{y}''_{1}{\rm d}x{\rm d}s\right) -2{\rm Re}\left(\int_{\varepsilon}^{T}g_{2s}\int_{\alpha}^{L}b_{2}y'_{2s}\overline{y}'_{2}{\rm d}x{\rm d}s\right)+o(1). \label{13}\end{eqnarray} (13) 若当$s\downarrow0$时,有$o(1)\rightarrow0$. 由(11),(13)式和带权的Cauchy不等式得到 \begin{eqnarray*} && -k_{1}\int_{\varepsilon}^{T}g_{1s}\int_{\alpha}^{L}b_{1}\left|y''_{1}(x,s)\right|^{2}{\rm d}x{\rm d}s -k_{1}\int_{\varepsilon}^{T}g_{2s}\int_{\alpha}^{L}b_{2}\left|y'_{2}(x,s)\right|^{2}{\rm d}x{\rm d}s\\ &\leq&-2{\rm Re}\left(\int_{\varepsilon}^{T}g_{1s}\int_{\alpha}^{L}b_{1}y''_{1s}\overline{y}''_{1}{\rm d}x{\rm d}s\right) -2{\rm Re}\left(\int_{\varepsilon}^{T}g_{2s}\int_{\alpha}^{L}b_{2}y'_{2s}\overline{y}'_{2}{\rm d}x{\rm d}s\right)+o(1)\\ &=&-2{\rm Re}\left(\int_{\varepsilon}^{T}g_{1s}\int_{\alpha}^{L}b_{1} \left(l''-\lambda y''_{1}\right)\overline{y}''_{1}{\rm d}x{\rm d}s\right)\\ &&-2{\rm Re}\left(\int_{\varepsilon}^{T}g_{2s}\int_{\alpha}^{L}b_{2} \left(\tau'-\lambda y'_{2}\right)\overline{y}'_{2}{\rm d}x{\rm d}s\right)+o(1)\\ &\leq&2{\rm Re}\lambda\int_{\varepsilon}^{T}g_{1s}\int_{\alpha}^{L}b_{1}\left|y''_{1}\right|^{2}{\rm d}x{\rm d}s +\delta\int_{\varepsilon}^{T}\left|g_{1s}\right|\int_{\alpha}^{L}b_{1}\left|y''_{1}\right|^{2}{\rm d}x{\rm d}s\\ &&+\frac{1}{\delta}\int_{\varepsilon}^{T}\left|g_{1s}\right|\int_{\alpha}^{L}b_{1}\left|l''\right|^{2}{\rm d}x{\rm d}s +2{\rm Re}\lambda\int_{\varepsilon}^{T}g_{2s}\int_{\alpha}^{L}b_{2}\left|y'_{2}\right|^{2}{\rm d}x{\rm d}s\\ &&+\delta\int_{\varepsilon}^{T}\left|g_{2s}\right|\int_{\alpha}^{L}b_{2}\left|y'_{2}\right|^{2}{\rm d}x{\rm d}s+ \frac{1}{\delta}\int_{\varepsilon}^{T}\left|g_{2s}\right|\int_{\alpha}^{L}b_{2}\left|\tau'\right|^{2}{\rm d}x{\rm d}s+o(1)\\ &=&-2{\rm Re}\lambda\left(\int_{\varepsilon}^{T}\left|g_{1s}\right| \int_{\alpha}^{L}b_{1}\left|y''_{1}\right|^{2}{\rm d}x{\rm d}s+ \int_{\varepsilon}^{T}\left|g_{2s}\right|\int_{\alpha}^{L}b_{2}\left|y'_{2}\right|^{2}{\rm d}x{\rm d}s\right)\\ &&+\delta\left(\int_{\varepsilon}^{T}\left|g_{1s}\right|\int_{\alpha}^{L}b_{1}\left|y''_{1}\right|^{2}{\rm d}x{\rm d}s+ \int_{\varepsilon}^{T}\left|g_{2s}\right|\int_{\alpha}^{L}b_{2}\left|y'_{2}\right|^{2}{\rm d}x{\rm d}s\right)\\ &&+\frac{1}{\delta}\left(\int_{\varepsilon}^{T}\left|g_{1s}\right| \int_{\alpha}^{L}b_{1}\left|l''\right|^{2}{\rm d}x{\rm d}s +\int_{\varepsilon}^{T}\left|g_{2s}\right|\int_{\alpha}^{L}b_{2}\left|\tau'\right|^{2}{\rm d}x{\rm d}s\right)+o(1). \end{eqnarray*} 从而有 \begin{eqnarray} &&(2{\rm Re}\lambda+k_{1}-\delta) \left(\int_{\varepsilon}^{T}\left|g_{1s}\right|\int_{\alpha}^{L}b_{1}\left|y''_{1}\right|^{2}{\rm d}x{\rm d}s+ \int_{\varepsilon}^{T}\left|g_{2s}\right|\int_{\alpha}^{L}b_{2}\left|y'_{2}\right|^{2}{\rm d}x{\rm d}s\right) \nonumber\\ &\leq&\frac{1}{\delta}\left\|(l,\tau)\right\|_{Y}^{2}+o(1).\label{14} \end{eqnarray} (14) 对于上式,选取足够小的$\delta$使得 $\delta\in(0,2{\rm Re}\lambda+k_{1})$ 并令$\varepsilon\downarrow0$,则有$o(1)\rightarrow0$, 且令$T\uparrow\infty$,即得(8)式. 同时,当$(y_{1},y_{2})\in Y$时,由(11)式得$(y_{1s},y_{2s})\in Y$, 再由(13)式得到(9)式. $\bf 定理2.1的证明$ 对于任意的$Z=(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\in D({\cal A})$. 由分部积分并应用引理3.1得到 \begin{eqnarray} &&{\rm Re}\langle {\cal A}Z,Z\rangle_{{\cal H}} \nonumber\\ &=&{\rm Re}\langle {\cal A}(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2}), (u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\rangle_{{\cal H}} \nonumber\\ &=&{\rm Re}\left\langle \left(\begin{array}{lll} v_{1},v_{2},-au_{2}-u_{1}^{(4)}+ \int_{0}^{+\infty}g_{1s}(s)(b_{1}y''_{1})''{\rm d}s, \\[3mm] -au_{1}+u''_{2}-\int_{0}^{+\infty}g_{2s}(s)(b_{2}y'_{2})'{\rm d}s, v_{1}-y_{1s},v_{2}-y_{2s}\end{array}\right), (u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\right\rangle_{{\cal H}} \nonumber\\ &=&{\rm Re}\left\{\int_{0}^{L}[v''_{1}\overline{u}''_{1}+v'_{2}\overline{u}'_{2} +av_{1}\overline{u}_{2}+av_{2}\overline{u}_{1}+(-au_{2}-u_{1}^{(4)}+ \int_{0}^{+\infty}g_{1s}(s)(b_{1}y''_{1})''{\rm d}s)\overline{v}_{1}]{\rm d}x\right\} \nonumber\\ &&+{\rm Re}\bigg\{\int_{0}^{L}(-au_{1} +u''_{2}-\int_{0}^{+\infty}g_{2s}(s)(b_{2}y'_{2})'{\rm d}s)\overline{v}_{2}{\rm d}x \nonumber\\ &&+\int_{0}^{+\infty}|g_{1s}(s)|\int_{0}^{L}b_{1}(v''_{1}-y''_{1s})\overline{y}''_{1}{\rm d}x{\rm d}s\bigg\} \nonumber\\ &&+{\rm Re}\left\{\int_{0}^{+\infty}|g_{2s}(s)|\int_{0}^{L}b_{2}(v'_{2}-y'_{2s}) \overline{y}'_{2}{\rm d}x{\rm d}s\right\} \nonumber\\ &=&{\rm Re}\left\{\int_{0}^{+\infty}g_{1s}(s)\int_{0}^{L}(b_{1}y''_{1})''\overline{v}_{1}{\rm d}x{\rm d}s- \int_{0}^{+\infty}g_{2s}(s)\int_{0}^{L}(b_{2}y'_{2})'\overline{v}_{2}{\rm d}x{\rm d}s\right\} \nonumber\\ &&+{\rm Re}\left\{-\int_{0}^{+\infty}g_{1s}(s)\int_{0}^{L}b_{1}(v_{1}-y_{1s})''\overline{y}''_{1}{\rm d}x{\rm d}s- \int_{0}^{+\infty}g_{2s}(s)\int_{0}^{L}b_{2}(v_{2}-y_{2s})'\overline{y}'_{2}{\rm d}x{\rm d}s\right\} \nonumber\\ &=&{\rm Re}\left\{\int_{0}^{+\infty}g_{1s}(s)\int_{0}^{L}b_{1}y''_{1s}\overline{y}''_{1}{\rm d}x{\rm d}s+ \int_{0}^{+\infty}g_{2s}(s)\int_{0}^{L}b_{2}y'_{2s}\overline{y}'_{2}{\rm d}x{\rm d}s\right\} \nonumber\\ &=&-{\rm Re}\left\langle(y_{1s},y_{2s}),(y_{1},y_{2})\right\rangle_{Y}\leq-\frac{k_{1}}{2} \|(y_{1},y_{2})\|_{Y}^{2}\leq0.\label{15} \end{eqnarray} (15) 因此${\cal A}$在${\cal H}$中是耗散的. 对$\forall Z_{1}=(f_{1},f_{2},f_{3},f_{4},l,\tau)\in {\cal H}$,我们考虑方程 \begin{equation}{\cal A}(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})=(f_{1},f_{2},f_{3},f_{4},l,\tau), \label{16}\end{equation} (16) 解此方程得 \begin{equation}\left\{\begin{array}{lll} v_{1}=f_{1},\quad v_{2}=f_{2},\\[2mm] y_{1}=\int_{0}^{s}(f_{1}(x)-l(x,s)){\rm d}s,\quad y_{2}=\int_{0}^{s}(f_{2}(x)-\tau(x,s)){\rm d}s,\\ -au_{2}-u_{1}^{(4)}+\int_{0}^{+\infty}g_{1s}(s)(b_{1}y''_{1})''{\rm d}s=f_{3},\\ -au_{1}+u''_{2}-\int_{0}^{+\infty}g_{2s}(s)(b_{2}y'_{2})'{\rm d}s=f_{4}. \end{array}\right. \label{17} \end{equation} (17) 对(17)式的后两式分别乘以$\overline{u}_{1},\overline{u}_{2}$, 并从$0$到$L$积分,分部积分并应用边界条件得 \begin{equation}\int_{0}^{L}|u''_{1}|^{2}{\rm d}x+\int_{0}^{L}a\overline{u}_{1}u_{2}{\rm d}x -\int_{0}^{L}\overline{u}_{1}\int_{0}^{+\infty}g_{1s}(b_{1}y''_{1})''{\rm d}s{\rm d}x=-\int_{0}^{L}\overline{u}_{1}f_{3}{\rm d}x. \label{18}\end{equation} (18) \begin{equation}\int_{0}^{L}|u'_{2}|^{2}{\rm d}x+\int_{0}^{L}au_{1}\overline{u}_{2}{\rm d}x +\int_{0}^{L}\overline{u}_{2}\int_{0}^{+\infty}g_{2s}(b_{2}y'_{2})'{\rm d}s{\rm d}x=-\int_{0}^{L}\overline{u}_{2}f_{4}{\rm d}x. \label{19}\end{equation} (19) 将(18),(19)式两式相加得 \begin{eqnarray} &&\int_{0}^{L}|u''_{1}|^{2}{\rm d}x +\int_{0}^{L}|u'_{2}|^{2}{\rm d}x+\int_{0}^{L}a(\overline{u}_{1}u_{2}+u_{1}\overline{u}_{2}){\rm d}x \nonumber\\ &=&-\int_{0}^{L}\overline{u}_{1}f_{3}{\rm d}x-\int_{0}^{L}\overline{u}_{2}f_{4}{\rm d}x +\int_{0}^{L}\overline{u}_{1}\int_{0}^{+\infty}g_{1s}(b_{1}y''_{1})''{\rm d}s{\rm d}x \nonumber\\ &&-\int_{0}^{L}\overline{u}_{2}\int_{0}^{+\infty}g_{2s}(b_{2}y'_{2})'{\rm d}s{\rm d}x. \label{20} \end{eqnarray} (20) 由上式经分部积分,并应用带权的Cauchy不等式和(H4)得到 \begin{eqnarray} \left\|(u_{1},u_{2})\right\|_{V}^{2} &=&\int_{0}^{L}(|u''_{1}|^{2}+|u'_{2}|^{2}){\rm d}x+\int_{0}^{L}a(\overline{u}_{1}u_{2}+u_{1}\overline{u}_{2}){\rm d}x \nonumber\\ &=&\bigg|-\int_{0}^{L}\overline{u}_{1}f_{3}{\rm d}x-\int_{0}^{L}\overline{u}_{2}f_{4}{\rm d}x +\int_{0}^{L}\overline{u}_{1}\int_{0}^{+\infty}g_{1s}(b_{1}y''_{1})''{\rm d}s{\rm d}x \nonumber\\ &&-\int_{0}^{L}\overline{u}_{2}\int_{0}^{+\infty}g_{2s}(b_{2}y'_{2})'{\rm d}s{\rm d}x\bigg| \nonumber\\ &=&\bigg|-\int_{0}^{L}\overline{u}_{1}f_{3}{\rm d}x-\int_{0}^{L}\overline{u}_{2}f_{4}{\rm d}x +\int_{0}^{+\infty}g_{1s}\int_{0}^{L}b_{1}y''_{1}\overline{u}''_{1}{\rm d}x{\rm d}s \nonumber\\ &&+\int_{0}^{+\infty}g_{2s}\int_{0}^{L}b_{2}y'_{2}\overline{u}'_{2}{\rm d}x{\rm d}s\bigg| \nonumber\\ &\leq& \frac{\varepsilon_{1}}{2}\int_{0}^{L}\left|u_{1}\right|^{2}{\rm d}x +\frac{1}{2\varepsilon_{1}}\int_{0}^{L}\left|f_{3}\right|^{2}{\rm d}x +\frac{\varepsilon_{2}}{2}\int_{0}^{L}\left|u_{2}\right|^{2}{\rm d}x +\frac{1}{2\varepsilon_{2}}\int_{0}^{L}\left|f_{4}\right|^{2}{\rm d}x \nonumber\\ &&+ \frac{1}{2}\int_{0}^{+\infty}\left|g_{1s}\right|\int_{0}^{L}b_{1}\left|u''_{1}\right|^{2}{\rm d}x{\rm d}s +\frac{1}{2}\int_{0}^{+\infty}\left|g_{1s}\right|\int_{\alpha}^{L}b_{1}\left|y''_{1}\right|^{2}{\rm d}x \nonumber\\ &&+ \frac{1}{2}\int_{0}^{+\infty}\left|g_{2s}\right|\int_{0}^{L}b_{2}\left|u'_{2}\right|^{2}{\rm d}x{\rm d}s +\frac{1}{2}\int_{0}^{+\infty}\left|g_{2s}\right|\int_{\alpha}^{L}b_{2}\left|y'_{2}\right|^{2}{\rm d}x \nonumber\\ &\leq& \frac{1}{2}\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty}\int_{0}^{L}(\left|u''_{1}\right|^{2} +\left|u'_{2}\right|^{2}){\rm d}x+\frac{\widetilde{\varepsilon}}{2}\left\|(f_{3},f_{4})\right\|_{H}^{2} \nonumber\\ &&+ \frac{1}{2}\int_{0}^{+\infty}\left|g_{1s}\right|\int_{0}^{L}b_{1}\left|u''_{1}\right|^{2}{\rm d}x{\rm d}s + \frac{1}{2}\int_{0}^{+\infty}\left|g_{2s}\right|\int_{0}^{L}b_{2}\left|u'_{2}\right|^{2}{\rm d}x{\rm d}s \nonumber\\ &&+\frac{1}{2}\left\|(y_{1},y_{2})\right\|_{Y}^{2} \nonumber\\ &\leq& \frac{1}{2}(\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty} +\left\|b_{1}\right\|\int_{0}^{+\infty}\left|g_{1s}\right|{\rm d}s)\int_{0}^{L}\left|u''_{1}\right|^{2}{\rm d}x \nonumber\\ &&+\frac{1}{2}(\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty} +\left\|b_{2}\right\|\int_{0}^{+\infty}\left|g_{2s}\right|{\rm d}s)\int_{0}^{L}\left|u'_{2}\right|^{2}{\rm d}x \nonumber\\ &&+\frac{\widetilde{\varepsilon}}{2}\left\|(f_{3},f_{4})\right\|_{H}^{2} +\frac{1}{2}\left\|(y_{1},y_{2})\right\|_{Y}^{2}, \label{21} \end{eqnarray} (21) 其中$\varepsilon_{1}=\sqrt{\frac{c_{2}}{c_{1}}} \left\|a\right\|_{\infty},\varepsilon_{2} =\sqrt{\frac{c_{1}}{c_{2}}}\left\|a\right\|_{\infty}$ 及 $\widetilde{\varepsilon}={\rm max}\{\varepsilon_{1}^{-1}, \varepsilon_{2}^{-1}\}$. 因为 \begin{eqnarray} \left\|(u_{1},u_{2})\right\|_{V}^{2} &=&\int_{0}^{L}(|u''_{1}|^{2}+|u'_{2}|^{2}){\rm d}x +\int_{0}^{L}a(\overline{u}_{1}u_{2}+u_{1}\overline{u}_{2}){\rm d}x \nonumber\\ &\geq& \int_{0}^{L}(\left|u''_{1}\right|^{2} +\left|u'_{2}\right|^{2}){\rm d}x-\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty}\int_{0}^{L}(\left|u''_{1}\right|^{2} +\left|u'_{2}\right|^{2}){\rm d}x \nonumber\\ &=&(1-\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty})\int_{0}^{L}(\left|u''_{1}\right|^{2} +\left|u'_{2}\right|^{2}){\rm d}x. \label{22} \end{eqnarray} (22) 所以结合(21)和(22)式得 \begin{eqnarray} &&(1-\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty})\int_{0}^{L}(\left|u''_{1}\right|^{2} +\left|u'_{2}\right|^{2}){\rm d}x \nonumber\\ &\leq& \frac{1}{2}(\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty} +\left\|b_{1}\right\|\int_{0}^{+\infty}\left|g_{1s}\right|{\rm d}s)\int_{0}^{L}\left|u''_{1}\right|^{2}{\rm d}x +\frac{\widetilde{\varepsilon}}{2}\left\|(f_{3},f_{4})\right\|_{H}^{2} \nonumber\\ &&+\frac{1}{2}(\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty} +\left\|b_{2}\right\|\int_{0}^{+\infty}\left|g_{2s}\right|{\rm d}s)\int_{0}^{L}\left|u'_{2}\right|^{2}{\rm d}x +\frac{1}{2}\left\|(y_{1},y_{2})\right\|_{Y}^{2}. \label{23} \end{eqnarray} (23) 于是有 \begin{eqnarray} &&(1-\frac{3}{2}\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty} -\frac{1}{2}\left\|b_{1}\right\|\int_{0}^{+\infty}\left|g_{1s}\right|{\rm d}s)\int_{0}^{L}\left|u''_{1}\right|^{2}{\rm d}x \nonumber\\ &&+(1-\frac{3}{2}\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty} -\frac{1}{2}\left\|b_{2}\right\|\int_{0}^{+\infty}\left|g_{2s}\right|{\rm d}s)\int_{0}^{L}\left|u'_{2}\right|^{2}{\rm d}x \nonumber\\ &\leq& \frac{\widetilde{\varepsilon}}{2}\left\|(f_{3},f_{4})\right\|_{H}^{2} +\frac{1}{2}\left\|(y_{1},y_{2})\right\|_{Y}^{2}. \label{24} \end{eqnarray} (24) 从而由假设(H5)知,若记$\gamma={\rm min}\{\gamma_{1},\gamma_{2}\}$, 则(24)式可化为 \begin{equation}\int_{0}^{L}(\left|u''_{1}\right|^{2}+\left|u'_{2}\right|^{2}){\rm d}x \leq\frac{1}{2\gamma}(\widetilde{\varepsilon}\left\|(f_{3},f_{4})\right\|_{H}^{2} +\left\|(y_{1},y_{2})\right\|_{Y}^{2}). \label{25}\end{equation} (25) 因此我们有如下估计 \begin{eqnarray} \left\|(u_{1},u_{2})\right\|_{V}^{2} &=&\int_{0}^{L}(|u''_{1}|^{2}+|u'_{2}|^{2}){\rm d}x +\int_{0}^{L}a(\overline{u}_{1}u_{2}+u_{1}\overline{u}_{2}){\rm d}x \nonumber\\ &\leq&\int_{0}^{L}(\left|u''_{1}\right|^{2} +\left|u'_{2}\right|^{2}){\rm d}x+\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty}\int_{0}^{L}(\left|u''_{1}\right|^{2} +\left|u'_{2}\right|^{2}){\rm d}x \nonumber\\ &=&(1+\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty})\int_{0}^{L}(\left|u''_{1}\right|^{2} +\left|u'_{2}\right|^{2}){\rm d}x \nonumber\\ &\leq& \frac{m}{2\gamma}(\widetilde{\varepsilon}\left\|(f_{3},f_{4})\right\|_{H}^{2} +\left\|(y_{1},y_{2})\right\|_{Y}^{2}), \label{26} \end{eqnarray} (26) 这里$m=1+\sqrt{c_{1}c_{2}}\left\|a\right\|_{\infty}$. 注意到 \begin{equation}\|(f_{1},f_{2})\|_{Y}^{2} =\int_{0}^{+\infty}|g_{1s}|\int_{\alpha}^{L}b_{1}|f''_{1}|^{2}{\rm d}x{\rm d}s +\int_{0}^{+\infty}|g_{2s}|\int_{\alpha}^{L}b_{2}|f'_{2}|^{2}{\rm d}x{\rm d}s \leq C_{1}\|(f_{1},f_{2})\|_{V}^{2}, \label{27}\end{equation} (27) 其中$C_{1}$是一个确定的正常数. 由(H4)得 \begin{equation} \|(v_{1},v_{2})\|_{H}^{2}=\|(f_{1},f_{2})\|_{H}^{2}=\int_{0}^{L}(|f_{1}|^{2}+|f_{2}|^{2}){\rm d}x \leq C_{2}\|(f_{1},f_{2})\|_{V}^{2}, \label{28}\end{equation} (28) 其中$C_{2}$是一个确定的正常数. 并且 \begin{eqnarray} \|(y_{1},y_{2})\|_{Y}^{2} &=& \bigg\|\bigg(\int_{0}^{s}(f_{1}-l){\rm d}s,\int_{0}^{s}(f_{2}-\tau) {\rm d}s\bigg)\bigg\|_{Y}^{2} \nonumber\\ &\leq& \frac{4}{k_{1}^{2}}\|(f_{1}-l,f_{2}-\tau)\|_{Y}^{2} \leq\frac{8C_{1}}{k_{1}^{2}}(\|(f_{1},f_{2})\|_{V}^{2}+\|(l,\tau)\|_{Y}^{2}). \label{29} \end{eqnarray} (29) 综合上面的推理过程知: 存在某个常数$M>0$, 使得$\|Z\|_{{\cal H}}\leq M\|Z_{1}\|_{{\cal H}}$. 因此${\cal A}^{-1}\in {\cal L}({\cal H}),0\in \rho({\cal A})$(${\cal A}$的预解集), 且${\cal A}$是闭的. 同时,容易验证${\rm ker}{\cal A}=\{0\}$. 且对足够小的$\lambda>0$,有 $R(\lambda I-{\cal A})={\cal H}$($R({\cal A})$表示${\cal A}$的值域), 故由文献[12]中定理1.4.6知$\overline{D({\cal A})}={\cal H}$. 那么应用Lumer-Phillips定理, 这就证明了${\cal A}$生成${\cal H}$上压缩$C_{0}$ -半群${\rm e}^{{\cal A}t}$. 进一步,若$(u_{1}^{0},u_{2}^{0},v_{1}^{0},v_{2}^{0},0,0)\in D({\cal A})$,则系统 (1) 存在唯一的强解 $$(u_{1}(\cdot),u_{2}(\cdot))\in C^{1}((0,+\infty);V)\cap C^{2}((0,+\infty);H);$$ 若$(u_{1}^{0},u_{2}^{0},v_{1}^{0},v_{2}^{0},0,0)\in {\cal H}$,则系统(1)存在唯一的弱解 $$(u_{1}(\cdot),u_{2}(\cdot))\in C((0,+\infty);V)\cap C^{1}((0,+\infty);H).$$ 这就证明了定理2.1. $\bf 性质 3.1$ 假设(H1)-(H3)成立, 那么i${\Bbb R}\subset \rho({\cal A})$. $\bf 证$ 易证${\cal A}$具有紧的预解式,因此用 文献[15引理4.1]类似的方法可得 $$\{\lambda\in\sigma({\cal A})| {\rm Im}\lambda\neq0\} \subset\sigma_{{\rm P}}({\cal A}).$$ 这里$\sigma_{{\rm P}}({\cal A})$意指算子${\cal A}$的点谱. 接下来要证i${\Bbb R}\subset \rho({\cal A})$, 只需要证明i$\omega\overline{\in}\sigma_{{\rm P}}({\cal A})$ ($\forall\omega\in{\Bbb R}$). 采用反证法, 假设结论不成立,则存在$\omega\in {\Bbb R},\omega\neq0$满足 i$\omega\in\sigma_{{\rm P}}({\cal A})$, 故存在$(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\in D({\cal A}), (u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\neq0$使得 \begin{equation} ({\rm i}\omega-{\cal A})(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})=0. \label{30}\end{equation} (30) 则有 \begin{eqnarray}0 &=&{\rm Re}\left\langle({\rm i}\omega-{\cal A})(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2}), (u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\right\rangle_{{\cal H}} \nonumber\\ &=&-{\rm Re}\left\langle(y_{1s},y_{2s}), (y_{1},y_{2})\right\rangle_{Y}\label{31}\end{eqnarray} (31) 由引理3.1的(9)式知: 在$(\alpha,L)$中,有 \begin{equation} y_{1}=0,\quad y_{2}=0. \label{32}\end{equation} (32) 又由线性算子${\cal A}$的定义 和(30)式得到 \begin{equation}\left\{\begin{array}{lll} v_{1}={\rm i}\omega u_{1},\quad v_{2}={\rm i}\omega u_{2},\\[2mm] -au_{2}-u_{1}^{(4)}+\int_{0}^{+\infty}g_{1s}(s)(b_{1}y''_{1})''{\rm d}s={\rm i}\omega v_{1},\\ [3mm] -au_{1}+u''_{2}-\int_{0}^{+\infty}g_{2s}(s)(b_{2}y'_{2})'{\rm d}s={\rm i}\omega v_{2},\\ [2mm] v_{1}-y_{1s}={\rm i}\omega y_{1},\quad v_{2}-y_{2s}={\rm i}\omega y_{2}. \end{array}\right.\label{33}\end{equation} (33) 由(32)和(33)式得到: 在$(\alpha,L)$中,有 \begin{equation}(u_{1},u_{2},v_{1},v_{2})=0.\label{34}\end{equation} (34) 上式结合(32)式得到: 在$(\alpha,L)$中,有 $$(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})=0.$$ 再由假设(H2)和(6),(33)式得 $$\left\{\begin{array}{lll} &\omega^{2}u_{1}-au_{2}-u_{1}^{(4)}=0,\\ &\omega^{2}u_{2}-au_{1}+u''_{2}=0,\\ &u_{1}|_{x=0}=u'_{1}|_{x=0}=u_{1}|_{x=L}=u'_{1}|_{x=L} =u_{2}|_{x=0}=u_{2}|_{x=L}=0. \end{array}\right.$$ 因此,对于$\forall x_{0}\in(\alpha,L)$, 有$W|_{x=x_{0}}=(u_{1},u'_{1},u''_{1},u'''_{1},u_{2},u'_{2})^{{\rm T}}|_{x=x_{0}}=0$. 则由上式得 $$\frac{{\rm d}W}{{\rm d}x}=A_{0}W,\quad W|_{x=x_{0}}=0,$$ 其中 $$A_{0}=\left(\begin{array}{cccccc} 0&~~1~~&0&~~0~~&0&~~0\\ 0&0&1&0&0&~~0\\ 0&0&0&1&0&~~0\\ \omega^{2}&0&0&0&-a&~~0\\ 0&0&0&0&0&~~1\\ a&0&0&0&-\omega^{2}&~~0 \end{array}\right).$$ 于是,在$(0,L)$ 中,由常微分方程的初值问题的唯一性定理[16] 知$(u_{1},u_{2})=0$, 由此结合(33)式得: $(u_{1},u_{2},v_{1},v_{2})=0$, 又在$(0,\alpha)$中,再次由假设(H2)和(32),(33)式得到: 当 $x\in(0,\alpha)$时,$y_{1}=y_{2}=0$. 综上得: 在$(0,L)$上,恒有$(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})=0$ 与假设矛盾. 性质3.1得证. 4 定理2.2的证明 本节我们证明本文的主要结果. $\bf 定理2.2的证明$ 假设(H1)-(H3)成立,如果$u_{1}(x,t),u_{2}(x,t)$是系统(1)的解. 那么有 $$(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})={\rm e}^{At}(u_{1}^{0},u_{2}^{0},v_{1}^{0},v_{2}^{0},0,0),$$ 和 $$\|(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\|_{{\cal H}}^{2}=2E(t),\quad t>0.$$ 众所周知: 系统(1)的能量$E(t)$的一致指数衰减性等价于$C_{0}$ -半群${\rm e}^{{\cal A}t}$的一致指数稳定性. 由性质3.1和频域结果[13]知,要证明$C_{0}$ -半群${\rm e}^{{\cal A}t}$的一致指数稳定性,只需证明 \begin{equation} \sup\{\|({\rm i}\beta-{\cal A})^{-1}\||\beta\in {\Bbb R}\}<+\infty. \label{35}\end{equation} (35) 假设(35)式不成立,即$\sup\{\|({\rm i}\beta-{\cal A})^{-1}\||\beta\in {\Bbb R}\}=+\infty$, 由一致有界性定理和预解式的连续性知,存在$\{\beta_{n}\}\subset {\Bbb R}$和 $\left\{Z_{n}=(u_{1n},u_{2n},v_{1n},v_{2n},y_{1n},y_{2n})\right\}\subset D({\cal A})$使得 \begin{equation} \|Z_{n}\|_{{\cal H}}=1,|\beta_{n}|\longrightarrow+\infty. \label{36}\end{equation} (36) 且在${\cal H}$中,有 \begin{equation} ({\rm i}\beta_{n}-{\cal A})Z_{n}=(f_{1n},f_{2n},f_{3n},f_{4n},l_{n},\tau_{n})\longrightarrow0. \label{37}\end{equation} (37) 即在$V$中, \begin{equation} ({\rm i}\beta_{n}u_{1n}-v_{1n},\quad {\rm i}\beta_{n}u_{2n}-v_{2n})=(f_{1n},f_{2n})\longrightarrow0, \label{38}\end{equation} (38) 在$H$中, \begin{eqnarray} & &\left({\rm i}\beta_{n}v_{1n}+au_{2n}+u_{1n}^{(4)} -\int_{0}^{+\infty}g_{1s}(b_{1}y''_{1n})''{\rm d}s,\ {\rm i}\beta_{n}v_{2n}+au_{1n}-u''_{2n}+\int_{0}^{+\infty}g_{2s}(b_{2}y'_{2n})'{\rm d}s\right) \nonumber\\ &=&(f_{3n},f_{4n})\longrightarrow0, \label{39}\end{eqnarray} (39) 在$Y$中, \begin{equation} ({\rm i}\beta_{n}y_{1n}-v_{1n}+y_{1ns},\ {\rm i}\beta_{n}y_{2n}-v_{2n}+y_{2ns})=(l_{n},\tau_{n})\longrightarrow0. \label{40}\end{equation} (40) 为了证明定理2.2,我们需要下面的引理. $\bf 引理 4.1$ 由(36)-(37)式所定义的序列 $(u_{1n},u_{2n},v_{1n},v_{2n},y_{1n},y_{2n})$有如下性质 \begin{equation} \|(y_{1n},y_{2n})\|_{Y}\longrightarrow0, \label{41}\end{equation} (41) \begin{equation} \int_{\alpha}^{L}(|u''_{1n}|^{2}+|u'_{2n}|^{2}){\rm d}x\longrightarrow0. \label{42}\end{equation} (42) $\bf 证$ 注意到$y_{1n}(\cdot,0)=0,$ $ y_{2n}(\cdot,0)=0$, 由(40)式得到 \begin{eqnarray} y_{1n}&=&\int_{0}^{s}{\rm e}^{-{\rm i}\beta_{n}(s-\lambda)}(v_{1n}(x)+l_{n}(x,\lambda)){\rm d}\lambda \nonumber\\ &=&\frac{1}{{\rm i}\beta_{n}}(1-{\rm e}^{-{\rm i}\beta_{n}s})v_{1n}(x) +\int_{0}^{s}{\rm e}^{-{\rm i}\beta_{n}(s-\lambda)}l_{n}(x,\lambda){\rm d}\lambda. \label{43}\end{eqnarray} (43) \begin{eqnarray} y_{2n}&=&\int_{0}^{s}{\rm e}^{-{\rm i}\beta_{n}(s-\lambda)}(v_{2n}(x)+\tau_{n}(x,\lambda)){\rm d}\lambda \nonumber\\ &=&\frac{1}{{\rm i}\beta_{n}}(1-{\rm e}^{-{\rm i}\beta_{n}s})v_{2n}(x) +\int_{0}^{s}{\rm e}^{-{\rm i}\beta_{n}(s-\lambda)}\tau_{n}(x,\lambda){\rm d}\lambda. \label{44} \end{eqnarray} (44) 因此,由引理3.1和(36)-(37)式可得 $$\frac{k_{1}}{2}\|(y_{1n},y_{2n})\|_{Y}^{2} \leq {\rm Re}\left\langle(y_{1ns},y_{2ns}),(y_{1n},y_{2n})\right\rangle_{Y}= {\rm Re}\left\langle({\rm i}\beta_{n}-{\cal A})Z_{n},Z_{n}\right\rangle_{Y}\longrightarrow0.$$ 上式即蕴含(41)式. 接下来,由(40),(41),(43)和(44)式可以推出 $$\left\|\left(\frac{1}{{\rm i}\beta_{n}}(1-{\rm e}^{-{\rm i}\beta_{n}s})v_{1n}, \frac{1}{{\rm i}\beta_{n}}(1-{\rm e}^{-{\rm i}\beta_{n}s})v_{2n}\right)\right\|_{Y}\longrightarrow0,$$ 即 \begin{equation} \int_{0}^{+\infty}(\cos\beta_{n}s-1)g_{1s}{\rm d}s \int_{\alpha}^{L}b_{1}\left|\frac{1}{{\rm i}\beta_{n}}v''_{1n}\right|^{2}{\rm d}x +\int_{0}^{+\infty}(\cos\beta_{n}s-1)g_{2s}{\rm d}s \int_{\alpha}^{L}b_{2}\left|\frac{1}{{\rm i}\beta_{n}}v'_{2n}\right|^{2}{\rm d}x\longrightarrow0. \label{45}\end{equation} (45) 由(g1)-(g3),对 $\forall\beta\neq0$,有 $$\xi_{j}(\beta):=\int_{0}^{+\infty}(\cos\beta s-1)g_{js}(s){\rm d}s>0,\quad j=1,2.$$ 并由文献[17]中的Riemann-Lebesgue引理得 $$\lim_{\beta\rightarrow\infty}\xi_{j}(\beta)=g_{j}(0)>0,\quad j=1,2.$$ 由于$\xi_{j}(\beta)~(j=1,2)$在${\Bbb R}$上连续,则存在正常数$\delta_{0},\widetilde{C}$使得 $$\inf_{|\beta|\geq\delta_{0}}\xi_{j}(\beta)\geq\widetilde{C}>0,\quad j=1,2.$$ 故由(38),(45)式和假设(H2)立即得到(42)式. 接下来继续证明定理2.2. 由假设(H4)和(38)式得 \begin{eqnarray*} \|(f_{1n},f_{2n})\|_{V}^{2} &=&\int_{0}^{L}(|f''_{1n}|^{2}+|f'_{2n}|^{2}){\rm d}x +\int_{0}^{L}a(\overline{f}_{1n}f_{2n}+f_{1n}\overline{f}_{2n}){\rm d}x\\ &\geq &\int_{0}^{L}(|f''_{1n}|^{2}+|f'_{2n}|^{2}){\rm d}x -\sqrt{c_{1}c_{2}}\|a\|_{\infty}\int_{0}^{L}(|f''_{1n}|^{2}+|f'_{2n}|^{2}){\rm d}x\\ &=&(1-\sqrt{c_{1}c_{2}}\|a\|_{\infty}) \int_{0}^{L}(|f''_{1n}|^{2}+|f'_{2n}|^{2}){\rm d}x\longrightarrow0. \end{eqnarray*} 上式结合(39)式得: 在$L^{2}(0,L)$中有 \begin{equation} f''_{1n}\rightarrow0,\quad f'_{2n}\rightarrow0,\quad f_{3n}\rightarrow0,\quad f_{4n}\rightarrow0. \label{46}\end{equation} (46) 由于$\left\langle(f_{1n},f_{2n}),(v_{1n},v_{2n})\right\rangle_{H}\rightarrow0$, 对(38)式用$(v_{1n},v_{2n})$在$H$中作内积有 \begin{equation} {\rm i}\beta_{n}\int_{0}^{L}u_{1n}\overline{v}_{1n}{\rm d}x+{\rm i}\beta_{n}\int_{0}^{L}u_{2n}\overline{v}_{2n}{\rm d}x -\int_{0}^{L}(|v_{1n}|^{2}+|v_{2n}|^{2}){\rm d}x\rightarrow0. \label{47}\end{equation} (47) 又由于$\left\langle(f_{3n},f_{4n}),(u_{1n},u_{2n})\right\rangle_{H}\rightarrow0$, 对(39)式用$(u_{1n},u_{2n})$在$H$中作内积,并通过分部积分,由引理4.1得 \begin{equation} {\rm i}\beta_{n}\int_{0}^{L}v_{1n}\overline{u}_{1n}{\rm d}x+{\rm i}\beta_{n}\int_{0}^{L}v_{2n}\overline{u}_{2n}{\rm d}x +\int_{0}^{L}(|u''_{1n}|^{2}+|u'_{2n}|^{2}){\rm d}x\rightarrow0. \label{48}\end{equation} (48) 将(47)和(48)式两式相加,并取实部得 \begin{equation} \int_{0}^{L}(|u''_{1n}|^{2}+|u'_{2n}|^{2}){\rm d}x-\int_{0}^{L}(|v_{1n}|^{2}+|v_{2n}|^{2}){\rm d}x\rightarrow0. \label{49}\end{equation} (49) 注意到(38)式: 当$|\beta_{n}|\rightarrow+\infty$时, 有$\big|\int_{0}^{L}au_{1n}u_{2n}{\rm d}x\big|\rightarrow0$. 从而由(49)式结合(36)式得 \begin{equation} \left\{\begin{array}{lll} \int_{0}^{L}(|u''_{1n}|^{2}+|u'_{2n}|^{2}){\rm d}x\rightarrow\frac{1}{2},\\ \int_{0}^{L}(|v_{1n}|^{2}+|v_{2n}|^{2}){\rm d}x\rightarrow\frac{1}{2}.\end{array}\right. \label{50}\end{equation} (50) 为了得到矛盾的讨论,由引理4.1知,接下来只需运用分片乘子法证明 \begin{equation} \int_{0}^{\alpha}(|u''_{1n}|^{2}+|u'_{2n}|^{2}){\rm d}x\rightarrow0. \label{51}\end{equation} (51) 结合(36),(38)式可得: 在$L^{2}(0,L)$中有 \begin{equation} u_{1n}\rightarrow0\quad u_{2n}\rightarrow0. \label{52}\end{equation} (52) 由(50)式知: $u''_{1n}$ 在$L^{2}(0,L)$中有界,由(52)式知 $$\int_{0}^{L}|u'_{1n}|{\rm d}x=u'_{1n}\overline{u}_{1n}|_{0}^{L} -\int_{0}^{L}u''_{1n}\overline{u}_{1n}{\rm d}x\rightarrow0 $$ 从而,在$L^{2}(0,L)$中,有 \begin{equation} u'_{1n}\rightarrow0. \label{53}\end{equation} (53) 由(38)和(39)式得: 在$L^{2}(0,L)$中有 \begin{equation} \beta_{n}^{2}u_{1n}-au_{2n}-u_{1n}^{(4)} +\int_{0}^{+\infty}g_{1s}(b_{1}y''_{1n})''{\rm d}s=-({\rm i}\beta_{n}f_{1n}+f_{3n})\rightarrow0. \label{54}\end{equation} (54) \begin{equation} \beta_{n}^{2}u_{2n}-au_{1n}+u''_{2n} -\int_{0}^{+\infty}g_{2s}(b_{2}y'_{2n})'{\rm d}s=-({\rm i}\beta_{n}f_{2n}+f_{4n})\rightarrow0. \label{55}\end{equation} (55) 现取$q=\gamma({\rm e}^{\eta x}-1)$,这里的$\eta$是一个给定的正常数, 对于某个足够小的$\varepsilon_{0}$,选择$\gamma$使得 $$\left\{\begin{array}{lll} \gamma=1,\quad x\in [0,\alpha],\\ \gamma=0,\quad x\in [\alpha+\varepsilon_{0},L], \end{array}\right.$$ 这里$0\leq\gamma\leq1$,且$\gamma\in C^{2}[0,L]$. 记$\alpha_{1}=\alpha+\varepsilon_{0}$, 并用$q\overline{u}'_{1n}$乘(54)式, 在$[0,L]$上积分,且分部积分并取实部得 \begin{equation} {\rm Re}\left\{\int_{0}^{L}q(\beta_{n}^{2}u_{1n}-au_{2n}-u_{1n}^{(4)})\overline{u}'_{1n}{\rm d}x +\int_{0}^{+\infty}g_{1s}\int_{0}^{L}q(b_{1}y''_{1n})''\overline{u}'_{1n}{\rm d}x{\rm d}s\right\}\rightarrow0. \label{56}\end{equation} (56) 注意到$q(0)=q(L)=0$和 \begin{eqnarray*} &&{\rm Re}\left\{\int_{0}^{L}qu_{1n}^{(4)}\overline{u}'_{1n}{\rm d}x\right\}\\ &=&{\rm Re}\left\{qu'''_{1n}\overline{u}'_{1n}|_{0}^{L}-\int_{0}^{L}u'''_{1n}(q\overline{u}'_{1n})'{\rm d}x\right\}\\ &=&-{\rm Re}\left\{u''_{1n}(q'\overline{u}'_{1n}+q\overline{u}''_{1n})|_{0}^{L} -\int_{0}^{L}u''_{1n}(q\overline{u}'_{1n})''{\rm d}x\right\}\\ &=&{\rm Re}\left\{\int_{0}^{L}u''_{1n}(q''\overline{u}'_{1n} +2q'\overline{u}''_{1n}+q\overline{u}'''_{1n}){\rm d}x\right\}\\ &=&{\rm Re}\left\{\int_{0}^{L}u''_{1n}q''\overline{u}'_{1n}{\rm d}x\right\} +{\rm Re}\left\{\int_{0}^{L}qu''_{1n}\overline{u}'''_{1n}{\rm d}x\right\}+2\int_{0}^{L}q'|u''_{1n}|^{2}{\rm d}x.\\ \end{eqnarray*} 而且 $$\int_{0}^{L}qu''_{1n}\overline{u}'''_{1n}{\rm d}x=q|u''_{1n}|^{2}|_{0}^{L} -\int_{0}^{L}q'|u''_{1n}|^{2}{\rm d}x-\int_{0}^{L}qu'''_{1n}\overline{u}''_{1n}{\rm d}x.$$ 于是 $${\rm Re}\left\{\int_{0}^{L}qu''_{1n}\overline{u}'''_{1n}{\rm d}x\right\} =-\frac{1}{2}\int_{0}^{L}q'|u''_{1n}|^{2}{\rm d}x.$$ 因此由(56)式得 \begin{eqnarray} && {\rm Re}\left\{\int_{0}^{L}q(\beta_{n}^{2}u_{1n}-au_{2n}-u_{1n}^{(4)})\overline{u}'_{1n}{\rm d}x +\int_{0}^{+\infty}g_{1s}\int_{0}^{L}q(b_{1}y''_{1n})''\overline{u}'_{1n}{\rm d}x{\rm d}s\right\} \nonumber\\ &=&-\frac{1}{2}\int_{0}^{L}q'|\beta_{n}u_{1n}|^{2}{\rm d}x-\frac{3}{2}\int_{0}^{L}q'|u''_{1n}|^{2}{\rm d}x -{\rm Re}\left\{\int_{0}^{L}u''_{1n}q''\overline{u}'_{1n}{\rm d}x\right\} \nonumber\\ &&-{\rm Re}\left\{\int_{0}^{L}qau_{2n}\overline{u}'_{1n}{\rm d}x\right\} +{\rm Re}\left\{\int_{0}^{+\infty}g_{1s} \int_{0}^{L}q(b_{1}y''_{1n})''\overline{u}'_{1n}{\rm d}x{\rm d}s\right\}\rightarrow0. \label{57} \end{eqnarray} (57) 由(50)式及$q$的取法知: $u''_{1n}q''$与$qa\overline{u}'_{1n}$都在$L^{2}(0,L)$上有界,当$x\in(0,\alpha)$时, $b_{1}(x)=0$,从而由(57)式结合(52)-(53)式可得 \begin{equation}\int_{0}^{\alpha}q'|\beta_{n}u_{1n}|^{2}{\rm d}x+3\int_{0}^{\alpha}q'|u''_{1n}|^{2}{\rm d}x \rightarrow0. \label{58}\end{equation} (58) 由于在$[0,\alpha]$上,$q'=\eta {\rm e}^{\eta x}>0$,因此,在$[0,\alpha]$上有 \begin{equation}\beta_{n}u_{1n}\rightarrow0,\quad u''_{1n}\rightarrow0. \label{59}\end{equation} (59) 同理,用$q\overline{u}'_{2n}$乘(55)式, 在$[0,L]$上积分,且分部积分并取实部得 \begin{equation} {\rm Re}\left\{\int_{0}^{L}q(\beta_{n}^{2}u_{2n}-au_{1n}+u''_{2n})\overline{u}'_{2n}{\rm d}x -\int_{0}^{+\infty}g_{2s}\int_{0}^{L}q(b_{2}y'_{2n})'\overline{u}'_{2n}{\rm d}x{\rm d}s\right\}\rightarrow0. \label{60}\end{equation} (60) 注意到$q(0)=q(L)=0$和 \begin{eqnarray*} {\rm Re}\left\{\int_{0}^{L}qu''_{2n}\overline{u}'_{2n}{\rm d}x\right\} &=&{\rm Re}\left\{q|u'_{2n}|^{2}|_{0}^{L}-\int_{0}^{L}u'_{2n}(q\overline{u}'_{2n})'{\rm d}x\right\} \\ &=&-{\rm Re}\left\{\int_{0}^{L}u'_{2n}(q'\overline{u}'_{2n} +q\overline{u}''_{2n}){\rm d}x\right\}. \end{eqnarray*} 于是 $${\rm Re}\left\{\int_{0}^{L}qu''_{2n}\overline{u}'_{2n}{\rm d}x\right\} =-\frac{1}{2}\int_{0}^{L}q'|u'_{2n}|^{2}{\rm d}x.$$ 因此由(60)式得 \begin{eqnarray} && {\rm Re}\left\{\int_{0}^{L}q(\beta_{n}^{2}u_{2n}-au_{2n}+u''_{2n})\overline{u}'_{2n}{\rm d}x +\int_{0}^{+\infty}g_{2s}\int_{0}^{L}q(b_{2}y'_{2n})'\overline{u}'_{2n}{\rm d}x{\rm d}s\right\} \nonumber\\ &=&-\frac{1}{2}\int_{0}^{L}q'|\beta_{n}u_{2n}|^{2}{\rm d}x-\frac{1}{2}\int_{0}^{L}q'|u'_{2n}|^{2}{\rm d}x \nonumber\\ &&-{\rm Re}\left\{\int_{0}^{L}qau_{1n}\overline{u}'_{2n}{\rm d}x\right\} +{\rm Re}\left\{\int_{0}^{+\infty}g_{2s} \int_{0}^{L}q(b_{2}y'_{2n})'\overline{u}'_{2n}{\rm d}x{\rm d}s\right\}\rightarrow0. \label{61} \end{eqnarray} (61) 由(50)式及$q$的取法知: $qa\overline{u}'_{2n}$在$L^{2}(0,L)$上有界, 当$x\in(0,\alpha)$时, $b_{2}(x)=0$,从而由(61)式结合(52)式可得 \begin{equation}\int_{0}^{\alpha}q'|\beta_{n}u_{1n}|^{2}{\rm d}x+\int_{0}^{\alpha}q'|u'_{2n}|^{2}{\rm d}x \rightarrow0. \label{62}\end{equation} (62) 由于在$[0,\alpha]$上,$q'=\eta {\rm e}^{\eta x}>0$,因此,在$[0,\alpha]$上有 \begin{equation}\beta_{n}u_{2n}\rightarrow0,\quad u'_{2n}\rightarrow0. \label{63}\end{equation} (63) 由(59)和(63)式立即得到(51)式. 所以,(42)式结合(51)式得到 \begin{equation} \int_{0}^{L}(|u''_{1n}|^{2}+|u'_{2n}|^{2}){\rm d}x\rightarrow0. \label{64}\end{equation} (64) 显然,上式与(50)式矛盾. 这样就证明了定理2.2.
本文的方法源于文献[5]和[9]. 在合适的假设下,应用经典结果[12]和$C_{0}$-半群生成元的预解式 在虚轴上的有界性频域结果[13],并且运用线性算子半群理论、分片乘子技巧以及矛盾的讨论 得到了系统(1)的适定性和能量是一致指数衰减性质.
为了研究系统(1)的能量衰减性质,我们进一步假设
(H4)
(H5)
引入函数空间 $$H_{0}^{2}(0,L)=\{u|u\in H^{2}(0,L),u(0)=u'(0)=u(L)=u'(L)=0\},$$ $$ H_{0}^{1}(0,L)=\{u|u\in H^{1}(0,L),u(0)=u(L)=0\},$$ 其中$H^{k}(0,L)$是$k$阶Sobolev空间(参见文献[14]). $$V=H_{0}^{2}(0,L)\times H_{0}^{1}(0,L),\quad H=L^{2}(0,L)\times L^{2}(0,L),$$ 赋予范数 $$\|(u_{1},u_{2})\|_{V}^{2}=\int_{0}^{L}(|u''_{1}|^{2}+|u'_{2}|^{2}){\rm d}x +\int_{0}^{L}a(u_{1}\overline{u}_{2}+\overline{u}_{1}u_{2}){\rm d}x, $$ $$\|(v_{1},v_{2})\|_{H}^{2}=\int_{0}^{L}(|v_{1}|^{2}+|v_{2}|^{2}){\rm d}x.$$ 同时,记 $$W_{1}=\left\{v|v,v',v''\in L^{2}(\delta,L),\forall\delta\in(\alpha,L), \sqrt{b_{1}}v''\in L^{2}(\alpha,L),v(L)=0\right\},$$ $$W_{2}= \left\{v|v,v'\in L^{2}(\delta,L),\forall\delta\in(\alpha,L), \sqrt{b_{2}}v'\in L^{2}(\alpha,L),v(L)=0\right\},$$ $$ Y=L^{2}(0,+\infty; W_{1})\times L^{2}(0,+\infty; W_{2}),$$ $$\|(y_{1},y_{2})\|_{Y}^{2}=\int_{0}^{+\infty}|g_{1s}|\int_{0}^{L}b_{1}|y''_{1}|^{2}{\rm d}x{\rm d}s+ \int_{0}^{+\infty}|g_{2s}|\int_{0}^{L}b_{2}|y'_{2}|^{2}{\rm d}x{\rm d}s.$$ 因此$V,H,Y$均为实(复) Hilbert空间,且具有范数$\|(\cdot,\cdot)\|_{V},\|(\cdot,\cdot)\|_{H},\|(\cdot,\cdot)\|_{Y}$.
设${{\cal H}}=V\times H\times Y$,赋予范数 $$\|Z\|_{{\cal H}}^{2}=\|(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\|_{{\cal H}}^{2} =\|(u_{1},u_{2})\|_{V}^{2}+\|(v_{1},v_{2})\|_{H}^{2}+\|(y_{1},y_{2})\|_{Y}^{2},$$ 那么${\cal H}$也是实(复) Hilbert空间.
接下来,设$Z=(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})$,在 ${\cal H}$中定义线性算子${\cal A}$如下
现在我们叙述本文的主要结果.
$bf 定理 2.1$ 如果假设(H1)-(H5)成立, 那么${\cal A}$生成${\cal H}$上压缩$C_{0}$ -半群${\rm e}^{{\cal A}t}$. 进一步,\\ 若$(u_{1}^{0},u_{2}^{0},v_{1}^{0},v_{2}^{0},0,0)\in D({\cal A})$, 则系统(1)存在唯一的强解; 若$(u_{1}^{0},u_{2}^{0},v_{1}^{0},v_{2}^{0},0,0)\in {{\cal H}}$, 则系统(1)存在唯一的弱解.
$bf 定理 2.2$ 如果假设(H1)-(H5)成立, 那么系统(1)的能量是一致指数衰减的.
本节我们先给出系统(1)的适定性,进一步给出线性算子${\cal A}$的谱性质.
类似文献[5]的定理2.1,我们先证明一个有用的引理.
$\bf 引理 3.1$ 假设$g_{1}(\cdot),g_{2}(\cdot)$满足条件(g1)-(g4), $(l,\tau)\in Y,{\rm Re}\lambda>-\frac{k_{1}}{2}$, 若记 $$y_{1}(x,s)=\int_{0}^{s}{\rm e}^{-\lambda(s-t)}l(x,t){\rm d}t,\quad y_{2}(x,s)=\int_{0}^{s}{\rm e}^{-\lambda(s-t)}\tau(x,t){\rm d}t, $$ 则 $$(y_{1},y_{2})\in Y\cap{C([0,+\infty); W_{1})\times C([0,+\infty); W_{2})}, \quad (y_{1s},y_{2s})\in Y.$$ 且对某个$\delta\in(0,2{\rm Re}\lambda+k_{1})$,有
$\bf 证$ 首先由文献[5,定理2.1]知: 当$s\downarrow0$或者$s\uparrow \infty$时,
由条件(g2)和(g3)得,对$T>\varepsilon>0$,
$\bf 定理2.1的证明$ 对于任意的$Z=(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\in D({\cal A})$. 由分部积分并应用引理3.1得到
对$\forall Z_{1}=(f_{1},f_{2},f_{3},f_{4},l,\tau)\in {\cal H}$,我们考虑方程
因为
注意到
由(H4)得
因此${\cal A}^{-1}\in {\cal L}({\cal H}),0\in \rho({\cal A})$(${\cal A}$的预解集), 且${\cal A}$是闭的. 同时,容易验证${\rm ker}{\cal A}=\{0\}$. 且对足够小的$\lambda>0$,有 $R(\lambda I-{\cal A})={\cal H}$($R({\cal A})$表示${\cal A}$的值域), 故由文献[12]中定理1.4.6知$\overline{D({\cal A})}={\cal H}$. 那么应用Lumer-Phillips定理, 这就证明了${\cal A}$生成${\cal H}$上压缩$C_{0}$ -半群${\rm e}^{{\cal A}t}$.
进一步,若$(u_{1}^{0},u_{2}^{0},v_{1}^{0},v_{2}^{0},0,0)\in D({\cal A})$,则系统 (1) 存在唯一的强解 $$(u_{1}(\cdot),u_{2}(\cdot))\in C^{1}((0,+\infty);V)\cap C^{2}((0,+\infty);H);$$ 若$(u_{1}^{0},u_{2}^{0},v_{1}^{0},v_{2}^{0},0,0)\in {\cal H}$,则系统(1)存在唯一的弱解 $$(u_{1}(\cdot),u_{2}(\cdot))\in C((0,+\infty);V)\cap C^{1}((0,+\infty);H).$$ 这就证明了定理2.1.
$\bf 性质 3.1$ 假设(H1)-(H3)成立, 那么i${\Bbb R}\subset \rho({\cal A})$.
$\bf 证$ 易证${\cal A}$具有紧的预解式,因此用 文献[15引理4.1]类似的方法可得 $$\{\lambda\in\sigma({\cal A})| {\rm Im}\lambda\neq0\} \subset\sigma_{{\rm P}}({\cal A}).$$ 这里$\sigma_{{\rm P}}({\cal A})$意指算子${\cal A}$的点谱. 接下来要证i${\Bbb R}\subset \rho({\cal A})$, 只需要证明i$\omega\overline{\in}\sigma_{{\rm P}}({\cal A})$ ($\forall\omega\in{\Bbb R}$). 采用反证法, 假设结论不成立,则存在$\omega\in {\Bbb R},\omega\neq0$满足 i$\omega\in\sigma_{{\rm P}}({\cal A})$, 故存在$(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\in D({\cal A}), (u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\neq0$使得
综上得: 在$(0,L)$上,恒有$(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})=0$ 与假设矛盾. 性质3.1得证.
本节我们证明本文的主要结果.
$\bf 定理2.2的证明$ 假设(H1)-(H3)成立,如果$u_{1}(x,t),u_{2}(x,t)$是系统(1)的解. 那么有 $$(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})={\rm e}^{At}(u_{1}^{0},u_{2}^{0},v_{1}^{0},v_{2}^{0},0,0),$$ 和 $$\|(u_{1},u_{2},v_{1},v_{2},y_{1},y_{2})\|_{{\cal H}}^{2}=2E(t),\quad t>0.$$ 众所周知: 系统(1)的能量$E(t)$的一致指数衰减性等价于$C_{0}$ -半群${\rm e}^{{\cal A}t}$的一致指数稳定性. 由性质3.1和频域结果[13]知,要证明$C_{0}$ -半群${\rm e}^{{\cal A}t}$的一致指数稳定性,只需证明
$\bf 引理 4.1$ 由(36)-(37)式所定义的序列 $(u_{1n},u_{2n},v_{1n},v_{2n},y_{1n},y_{2n})$有如下性质
接下来,由(40),(41),(43)和(44)式可以推出 $$\left\|\left(\frac{1}{{\rm i}\beta_{n}}(1-{\rm e}^{-{\rm i}\beta_{n}s})v_{1n}, \frac{1}{{\rm i}\beta_{n}}(1-{\rm e}^{-{\rm i}\beta_{n}s})v_{2n}\right)\right\|_{Y}\longrightarrow0,$$ 即
接下来继续证明定理2.2. 由假设(H4)和(38)式得 \begin{eqnarray*} \|(f_{1n},f_{2n})\|_{V}^{2} &=&\int_{0}^{L}(|f''_{1n}|^{2}+|f'_{2n}|^{2}){\rm d}x +\int_{0}^{L}a(\overline{f}_{1n}f_{2n}+f_{1n}\overline{f}_{2n}){\rm d}x\\ &\geq &\int_{0}^{L}(|f''_{1n}|^{2}+|f'_{2n}|^{2}){\rm d}x -\sqrt{c_{1}c_{2}}\|a\|_{\infty}\int_{0}^{L}(|f''_{1n}|^{2}+|f'_{2n}|^{2}){\rm d}x\\ &=&(1-\sqrt{c_{1}c_{2}}\|a\|_{\infty}) \int_{0}^{L}(|f''_{1n}|^{2}+|f'_{2n}|^{2}){\rm d}x\longrightarrow0. \end{eqnarray*} 上式结合(39)式得: 在$L^{2}(0,L)$中有
为了得到矛盾的讨论,由引理4.1知,接下来只需运用分片乘子法证明
结合(36),(38)式可得: 在$L^{2}(0,L)$中有
由(38)和(39)式得: 在$L^{2}(0,L)$中有
现取$q=\gamma({\rm e}^{\eta x}-1)$,这里的$\eta$是一个给定的正常数, 对于某个足够小的$\varepsilon_{0}$,选择$\gamma$使得 $$\left\{\begin{array}{lll} \gamma=1,\quad x\in [0,\alpha],\\ \gamma=0,\quad x\in [\alpha+\varepsilon_{0},L], \end{array}\right.$$ 这里$0\leq\gamma\leq1$,且$\gamma\in C^{2}[0,L]$.
记$\alpha_{1}=\alpha+\varepsilon_{0}$, 并用$q\overline{u}'_{1n}$乘(54)式, 在$[0,L]$上积分,且分部积分并取实部得
同理,用$q\overline{u}'_{2n}$乘(55)式, 在$[0,L]$上积分,且分部积分并取实部得