Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
  数学物理学报  2015, Vol. 35A Issue (1): 182-193   PDF (310 KB)    
扩展功能    
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章    
刘竟成
李俊锋
张学军
Cn中单位球上Dirichlet型空间的Cesàro 算子
刘竟成1, 李俊锋2,张学军1    
1.湖南师范大学数学与计算机科学学院 高性能计算与随机信息处理省部共建教育部重点实验室(HPCSIP) 长沙 410081;
2.湖南城市学院数学与计算科学系 湖南 益阳 413000
摘要    :讨论了不同Dirichlet型空间的广义Cesàro算子Tψ:DpαDβ,给出了0<p11<p<α+1p>n+1+αTψ是有界算 子或紧算子的充要条件. 同时,也给出了p取其它值时 Tψ是有界算子或紧算子的充分 条件或必要条件.
关键词Dirichlet型空间     有界性     紧性     广义Cesàro 算子    
Generalized Cesàro Operator Between Different Dirichlet-type Spaces in the Unit Ball of Cn
Liu Jingcheng1, Li Junfeng2;Zhang Xuejun1    
1. College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP) (Ministry of Education of China), Hunan Normal University, Changsha 410081;;
2. Department of Mathematics and Computer Science, Hunan City University, Yiyang 431000)
Abstract    : In this paper, we study the generalized Cesàro operator Tψ:DpαDqβ between different Dirichlet type spaces. For 0<p11<p<α+1 or p>n+1+α, we provide sufficient and necessary conditons for Tψ to be bounded or compact. Moreover, for other p, we also discuss the sufficient conditions or the necessary conditons for Tψ to be bounded or compact.
Key words: Dirichlet type spaces     Boundedness     Compactness     Generalized Cesàro operator    
1 引言

Bn表示Cn中的单位球; dv和dσ分别表示BnBn的正规Lebesgue测度; 对z=(z1,,zn), w=(w1,,wn),我们定义z,w=nj=1zj¯wj; H(Bn)表示Bn上全纯函数的全体; H表示Bn上的有界 全纯函数的全体. 对α>1, 定义dvα(z)=cα(1|z|2)αdv(z), 其中cα=Γ(n+1+α)n!Γ(α+1).

fH(Bn),用f(z)=(fz1(z),,fzn(z))表示f的梯度, 用Rf(z)=f(z),¯z=nj=1zjfzj(z) 表示f的径向导数.

0<p<, α>1,Bn上的加权Bergman空间ApαH(Bn)中满足 fpApα=Bn|f(z)|pdvα(z)<的函数f的全体; Bn上的加权Dirichlet空间DpαH(Bn)中满足 RfApα的函数全体. 因此fDpα当且仅当 fpDpα=|f(0)|p+RfpApα<.

在单复变中,Cesàro算子定义如下 C[f](z)=j=0(1j+1jk=0ak)zj,       f(z)=j=0ajzjH(B1). 给定gH(B1),H(B1)上的广义Cesàro算子定义为 Tg(f)(z)=z0f(t)g(t)dt    (fH(B1), zB1). 容易验证,当g(z)=log11z时, Tg(f)(z)=zC[f](z).

在多复变中,给定 ψH(Bn),H(Bn)上广义 Cesàro算子 Tψ 定义为 Tψ(f)(z)=10f(tz)Rψ(tz)dtt    (fH(Bn), zBn). 在复平面上,Cesàro 算子和广义 Cesàro算子已经被研究了相当长的时间,在 Hardy 空间、BMOA空间、 Bloch型空间、Bergman空间、 混合模空间等经典函数空间上获得了一系列成果(见文献[1, 2, 3, 4, 5, 6, 7]); 对于多复变情形,最近文献[8, 9, 10, 11, 12]分别讨论了单位球上 Bloch空间,混合模空间,Besov-Sobolev空间以及Bloch型空间与Dirichlet型空间之间的广义Cesàro算子的有界性和紧性问题. 本文将在上述基础之上讨论从Dirichlet型空间Dpα 到 Dirichlet型空间Dqβ 的广义Cesàro算子Tψ, 给出了当0<p11<p<α+1p>n+1+αTψ为有界算子或紧算子的充要条件. 同时,也给出了p取其它值时Tψ为有界算子或紧算子的充分 条件或必要条件.

2 一些引理

本文中C,C,C等表示与变量z,w,a等无关但可以与某些有界量或参数p,q等 有关的正数,不同的地方可以代表不同的数.

2.1 ([13,定理2.10]) 设a,b为实数,定义积分算子S如下 Sf(z)=(1|z|2)aBn(1|w|2)b|1z,w|n+1+a+bf(w)dv(w), 则对<t<1p< 以下两条等价

(1) SLp(Bn,dvt)的有界算子(Lp(Bn,dvt)表示Lebesgue空间);

(2) pa<t+1<p(b+1).

2.2 ([13,定理2.15]) 设0<p1, α>1. 则 Bn|f(z)|(1|z|2)(n+1+α)/p(n+1)dv(z)CfApα 对所有的fApα成立.

2.3 ([13,定理 2.2]) 设α>1, fA1α. 则对所有的zBn f(z)=Bnf(w)dvα(w)(1z,w)n+1+α.

2.4 ([13,定理 1.12]) 设c是实数,t>1. 则积分 Jc,t=Bn(1|w|2)tdv(w)|1z,w|n+1+t+c,    zBn 有如下性质:

(1) 当 c<0时,Jc,t有界;

(2) 当 c=0时,Jc,tlog11|z|2 (|z|1);

(3)~ 当c>0时,Jc,t(1|z|2)c (|z|1).

2.5α>1,p>0,fDpαf(0)=0,则存在常数C>0以及充分大的γ使得

(i) 当0<p1时,有 |f(z)|pCBn|Rf(w)|pdvγ(w)|1z,w|n+1+γp;

(ii) 当p>1时,对任给的s>0,有 |f(z)|pCBn|Rf(w)|pdvγ(w)|1z,w|n+1+γ+sp.

fDpα,则当0<p1时,取充分大的βn+1+αpn1, 当p>1时,取充分大的β>1+αp就有RfA1β,由引理2.3知, Rf(z)=BnRf(w)dvβ(w)(1z,w)n+1+β,    zBn. 由于 Rf(0)=0,所以 Rf(z)=BnRf(w)(1(1z,w)n+1+β1)dvβ(w),    zBn. 又因为 f(z)f(0)=10Rf(tz)tdt=BnRf(w)L(z,w)dvβ(w), 其中 |L(z,w)|=|10(1(1tz,w)n+1+β1)dtt|=|k=1Γ(k+n+1+β)kk!Γ(n+1+β)z,wk|C|1z,w|n+β. 所以 |f(z)|CBn|Rf(w)|dvβ(w)|1z,w|n+β.(2.1)

0<p1时,令 β=n+1+γp(n+1),β充分大使得 γ>α+p>1,对于固定的zBn,由于 Bn|Rf(w)/(1w,z)n+β|pdvγ(w)C(1|z|2)(n+β)p+αγBn|Rf(w)|pdvα(w), 所以Rf(w)/(1w,z)n+βApγ. 由引理2.2 和(2.1)式得 |f(z)|pC(Bn|Rf(w)(1z,w)n+β|(1|w|2)n+1+γp(n+1)dv(w))pCBn|Rf(w)(1z,w)n+β|pdvγ(w)CBn|Rf(w)|pdvγ(w)|1z,w|n+1+γp.p>1时,让1/p+1/q=1,任取非常小的s>0,由H¨older 不等式以及引理2.4得 |f(z)|pC(Bn|Rf(w)|dvβ(w)|1z,w|n+β)pCBn|Rf(w)|p(1|w|2)pdvβ1(w)|1z,w|n+s+β(Bndvβ1(w)|1z,w|nqsp+β)pqCBn|Rf(w)|p(1|w|2)pdvβ1(w)|1z,w|n+s+βCBn|Rf(w)|pdvβ1(w)|1z,w|n+s+βp.γ=β1,我们有 |f(z)|pCBn|Rf(w)|pdvγ(w)|1z,w|n+1+γ+sp. 证毕.

2.6α>1,p>0,fDpα, 则存在常数C>0使得 |f(z)|CfDpα{1,n+1+α<p;log21|z|2,  n+1+α=p;(1|z|2)n+1+αpp,n+1+α>p.(2.2)

fDpα,类似引理2.5的证明, 对充分大的 β>max Rf(z)=\int_{B_n}{Rf(w)} \bigg(\frac{1}{(1-\langle z,w\rangle )^{n+1+\beta}}-1\bigg){\rm d}v_\beta(w),\ \ \ \ z\in B_n. (2.3) 因此,当p>1时,任给\sigma>0,由引理2.4得 \begin{eqnarray*} |Rf(z)|^p&\leq & C \left(\int_{B_n}|Rf(w)|^p\frac{|1-(1-\langle z,w\rangle )^{n+1+\beta}|^p}{|1-\langle z,w\rangle |^{n+1+\beta-p\sigma}}{\rm d}v_\beta(w)\right)\\ && \times\left(\int_{B_n}\frac{1}{|1-\langle z,w\rangle |^{n+1+\beta+\frac{p}{p-1}\sigma}}{\rm d}v_\beta(w)\right)^{p-1}\\ &\leq&C \left(\frac{|z|^p}{(1-|z|^2)^{n+1+\alpha-p\sigma}}\int_{B_n}|Rf(w)|^p{\rm d}v_\alpha(w)\right)\left((1-|z|^2)^{-\frac{p}{p-1}\sigma}\right)^{p-1}\\ &\leq&C \frac{|z|^p}{(1-|z|^2)^{n+1+\alpha}}\int_{B_n}|Rf(w)|^p{\rm d}v_\alpha(w). \end{eqnarray*}0<p< 1时,令 \beta=\frac{n+1+\gamma}{p}-(n+1),\beta充分大使得 \gamma > \alpha+p>-1,对于固定的z\in B_n,Rf(w)\langle w,z\rangle /(1-\langle w,z\rangle )^{n+1+\beta}\in A_{\gamma}^p. 由引理2.2和(2.3)式得 \begin{eqnarray*} |Rf(z)|^p &\leq& C \left(\int_{B_n} \bigg|\frac{Rf(w)(1-(1-\langle z,w\rangle )^{n+1+\beta})} {(1-\langle z,w\rangle )^{n+1+\beta}}\bigg|(1-|w|^2)^{\frac{n+1+\gamma}{p}-(n+1)}{\rm d}v(w)\right)^p\\ &\leq& C\int_{B_n}\bigg|\frac{Rf(w)\langle z,w\rangle } {(1-\langle z,w\rangle )^{n+1+\beta}}\bigg|^p{\rm d}v_\gamma(w)\leq C |z|^p\int_{B_n}\frac{|Rf(w)|^p{\rm d}v_\gamma(w)}{|1-\langle z,w\rangle |^{n+1+\gamma}}\\ &\leq& C\frac{|z|^p}{(1-|z|^2)^{n+1+\alpha}}\int_{B_n}|Rf(w)|^p{\rm d}v_\alpha(w). \end{eqnarray*} 因此,对所有的0<p<\infty|Rf(z)| \leq C\frac{|z|}{(1-|z|^2)^{\frac{n+1+\alpha}{p}}}\|f\|_{D_\alpha^p}, 所以 \begin{eqnarray*} |f(z)|&=&\bigg|f(0)+\int_0^1\frac{Rf(tz)}{t}{\rm d}t\bigg| \leq |f(0)|+C\|f\|_{D_\alpha^p}\int_0^1\frac{|tz|} {t(1-|tz|^2)^{\frac{n+1+\alpha}{p}}}{\rm d}t\\ &\leq& |f(0)|+C\|f\|_{D_\alpha^p}\int_0^1 \frac{|z|{\rm d}t}{(1-|tz|^2)^{\frac{n+1+\alpha}{p}}}\\ &\leq& |f(0)|+C\|f\|_{D_\alpha^p}\int_0^{|z|} \frac{{\rm d}t}{(1-t)^{\frac{n+1+\alpha}{p}}}\\ &\leq & C\|f\|_{D_\alpha^p} \left\{ \begin{array}{ll} 1,& n+1+\alpha<p; \\ \log\frac{2}{1-|z|^2},\ \ & n+1+\alpha=p; \\[2mm] (1-|z|^2)^{\frac{n+1+\alpha-p}{p}},~~ & n+1+\alpha>p. \end{array} \right. \end{eqnarray*} 证毕.

\bf 引理 2.7 $^{[16]}\quad 设q>-1,则存在常数C>0,使得对一切w\in B_n,都有 \int_{B_n}\bigg|\log\frac{1}{1-\langle z,w\rangle }\bigg|^2\frac{(1-|z|^2)^q}{|1-\langle z,w\rangle |^{n+1+q}}{\rm d}v(z)\leq C\left(\log\frac{1}{1-|w|^2}\right)^2. $

3 主要结论

\bf 定理1\psi\in H(B_n),0<p\leq q<\infty,\alpha,\ \beta>-1. 则

(i) 当0<p\leq 11<p<1+\alpha时,T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子的充要条件为 \sup_{a\in B_n}\int_{B_n}\frac{|R\psi(z)|^q(1-|a|^2)^{q}{\rm d}v_\beta(z)}{|1-\langle a,z\rangle |^{\frac{q(n+1+\alpha)}{p}}}=M_1<\infty; (3.1)

(ii) 当p>n+1+\alpha时,T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子的充要条件为\psi\in D_{\beta}^q;

(iii) 当1<p<n+1+\alpha\alpha+1\leq p时,若T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子,则(3.1)式成立; 若存在s{\rm{ }} > 0,使得 \sup_{a\in B_n}\int_{B_n}\frac{|R\psi(z)|^q(1-|a|^2)^{q}{\rm d}v_\beta(z)}{|1-\langle a,z\rangle |^{\frac{q(n+1+\alpha+s)}{p}}}=M_2<\infty,(3.2) T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子; (iv)~ 当p=n+1+\alpha时,若T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子,则 \sup_{a\in B_n}\int_{B_n}|R\psi(z)|^q \bigg(\log\frac{2}{1-|a|^2}\bigg)^{-\frac{2q}{p}} \bigg|\log\frac{2}{1-\langle a,z\rangle }\bigg|^{q+\frac{2q}{p}}{\rm d}v_\beta(z)=M_3<\infty;(3.3) \int_{B_n}|R\psi(z)|^q \bigg(\log{\frac{2}{1-|z|^2}}\bigg)^q{\rm d}v_\beta(z)=M_4<\infty,(3.4) T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子.

\bf 证 我们先证充分性. 对任意的f\in D_{\alpha}^p, \begin{eqnarray*} \left(\|T_\psi(f)\|_{D_\beta^q}\right)^{p} &=& \left(|T_\psi(f)(0)|^q+ \int_{B_n}|R(T_\psi(f))(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}} \\ &=&\left(\int_{B_n}|R\psi(z)f(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}. \end{eqnarray*} (i) (a) 当0 < {\rm{ }}p \le 1时,若(3.1)式成立,由Minkowski不等式和引理2.5得,对充分大的\gamma>\alpha+p>-1\begin{eqnarray*} && \left(\int_{B_n}|R\psi(z)f(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}\\ &\leq& C\left(\int_{B_n}\left(\int_{B_n} \frac{|Rf(w)|^p}{|1-\langle z,w\rangle |^{n+1+\gamma-p}}{\rm d}v_{\gamma}(w)\right)^{\frac{q}{p}}|R\psi(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}\\ &\leq&C\int_{B_n}\left(\int_{B_n}\frac{|Rf(w)|^q|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^{\frac{q}{p}(n+1+\gamma-p)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v_{\gamma}(w)\\ &\leq & C\int_{B_n}|Rf(w)|^p(1-|w|^2)^{\alpha}\left(\int_{B_n}\frac{(1-|w|^2)^{\frac{q}{p}(\gamma-\alpha)}|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^ {\frac{q}{p}(n+1+\gamma-p)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v(w)\\ &\leq & C\int_{B_n}|Rf(w)|^p(1-|w|^2)^{\alpha}\left(\int_{B_n}\frac{(1-|w|^2)^{q}|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^ {\frac{q}{p}(n+1+\alpha)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v(w)\\ &\leq&C(M_1)^{\frac{p}{q}}\|f\|^p_{D_\alpha^p}. \end{eqnarray*} 所以 T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子. (b) 当1<p<1+\alpha时,对充分大的 \gamma>\max\{\alpha, \frac{1+\alpha}{p}\}>1, 由文献[13]中定理2.2的证明,Hölder不等式以及(2.1)式和引理2.4得 \begin{eqnarray*} |f(z)|^p&=& \bigg|\int_{B_n}\frac{f(w)(1-|z|^2)^{n+1+\gamma}}{|1-\langle z,w\rangle |^{2(n+1+\gamma)}}{\rm d}v_\gamma(w)\bigg|^p \\ &\leq& \int_{B_n}\frac{|f(w)|^p(1-|z|^2)^{n+1+\gamma}}{|1-\langle z,w\rangle |^{2(n+1+\gamma)}}{\rm d}v_\gamma(w) \left(\int_{B_n}\frac{(1-|z|^2)^{n+1+\gamma}}{|1-\langle z,w\rangle |^{2(n+1+\gamma)}}{\rm d}v_\gamma(w)\right)^{p-1}\\ &\leq& C \int_{B_n}\frac{1}{|1-\langle z,w\rangle |^{n+1+\gamma}} \left(\int_{B_n}\frac{|Rf(\eta)|}{|1-\langle w,\eta\rangle |^{n+\gamma}}{\rm d}v_\gamma(\eta)\right)^p{\rm d}v_\gamma(w). \end{eqnarray*} 由Minkowski不等式以及引理2.1得 \begin{eqnarray*} &&\left(\int_{B_n}|R\psi(z)f(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}\\ &\leq& C \int_{B_n}\left(\int_{B_n}\frac{|Rf(\eta)|}{|1-\langle w,\eta\rangle |^{n+\gamma}}{\rm d}v_\gamma(\eta)\right)^p\left( \int_{B_n}\frac{(1-|w|^2)^q|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^{\frac{q}{p}(n+1+\alpha)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v_{\alpha-p}(w)\\ &\leq& C(M_1)^{\frac{p}{q}}\int_{B_n}\left(\int_{B_n}\frac{|Rf(\eta)(1-|\eta|^2)|(1-|\eta|^2)^{\gamma-1}}{|1-\langle w,\eta\rangle |^{n+\gamma}}{\rm d}v(\eta)\right)^p{\rm d}v_{\alpha-p}(w)\\ &\leq& C'(M_1)^{\frac{p}{q}}\int_{B_n}|Rf(w)(1-|w|^2)|^p{\rm d}v_{\alpha-p}(w)\leq C'(M_1)^{\frac{p}{q}}\|f\|^p_{D_\alpha^p}. \end{eqnarray*} 所以T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子.

(ii) 当p>n+1+\alpha时,若\psi\in D_{\beta}^q,则由引理2.6得 \begin{eqnarray*} \|T_\psi(f)\|_{D_\beta^q} &=&\left(\int_{B_n}|R\psi(z)f(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{1}{q}}\\ &\leq & C \|f\|_{D_\alpha^p}\left(\int_{B_n}|R\psi(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{1}{q}}\leq C \|\psi\|_{D_\beta^q}\|f\|_{D_\alpha^p}. \end{eqnarray*}

(iii) 当1<p<n+1+\alpha\alpha+1\leq p时,若存在s>0,使得 \sup_{a\in B_n}\int_{B_n}\frac{|R\psi(z)|^q(1-|a|^2)^{q}{\rm d}v_\beta(z)}{|1-\langle a,z\rangle |^{\frac{q(n+1+\alpha+s)}{p}}}=M_2<\infty,(3.5) 则由Minkowski不等式和引理2.5类似(i)_{(a)}的证明得,对充分大的\gamma>\frac{1+\alpha}{p}>-1\begin{eqnarray*} && \left(\int_{B_n}|R\psi(z)f(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}\\ &\leq& C\left(\int_{B_n}\left(\int_{B_n} \frac{|Rf(w)|^p}{|1-\langle z,w\rangle |^{n+1+\gamma+s-p}}{\rm d}v_{\gamma}(w)\right)^{\frac{q}{p}}|R\psi(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}\\ &\leq & C\int_{B_n}|Rf(w)|^p(1-|w|^2)^{\alpha}\left(\int_{B_n}\frac{(1-|w|^2)^{q}|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^ {\frac{q}{p}(n+1+\alpha+s)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v(w)\\ &\leq&C(M_2)^{\frac{p}{q}}\|f\|_{D_\alpha^p}. \end{eqnarray*} 所以 T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子.

(iv) 当p=n+1+\alpha时,若(3.4)式成立,则由引理2.6得 \begin{eqnarray*} \|T_\psi(f)\|_{D_\beta^q} &=&\left(\int_{B_n}|R\psi(z)f(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{1}{q}}\\ &\leq& C \|f\|_{D_\alpha^p}\left(\int_{B_n}|R\psi(z)|^{q}(\log{\frac{2}{1-|z|^2}})^q{\rm d}v_\beta(z)\right)^{\frac{1}{q}} \leq C (M_4)^{\frac{1}{q}}\|f\|_{D_\alpha^p}. \end{eqnarray*} 所以 T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子.

必要性: 若T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子,则存在常数C>0使得对任意的f\in D_{\alpha}^p,有 \|T_\psi(f)\|_{D^q_{\beta}}\leq C\|f\|_{D_{\alpha}^p},取f=1\psi\in D_{\beta}^q,从而(ii)的必要性得证.

任取a\in B_n,当0<p<n+1+\alpha时,令 f_a(z)=\frac{(1-|a|^2)}{(1-\langle z,a\rangle )^\frac{n+1+\alpha}{p}},则 Rf_a(z)=\frac{n+1+\alpha}{p}\frac{\langle z,a\rangle (1-|a|^2)}{(1-\langle z,a\rangle )^\frac{n+1+\alpha+p}{p}}. 由引理2.4得 \begin{eqnarray*} \|f_a\|^p_{D_{\alpha}^p}&=&|f_a(0)|^p+\int_{B_n}|Rf_a(z)|^p{\rm d}v_\alpha(z)\leq 1+\int_{B_n}|\frac{n+1+\alpha}{p}\frac{\langle z,a\rangle (1-|a|^2)}{(1-\langle z,a\rangle )^\frac{n+1+\alpha+p}{p}}|^p{\rm d}v_\alpha(z)\\ &\leq& C\left(1+\int_{B_n}\frac{(1-|a|^2)^p}{|1-\langle z,a\rangle |^{n+1+\alpha+p}}{\rm d}v_\alpha(z)\right)\leq C', \end{eqnarray*} 所以f_a(z)\in D_{\alpha}^p\|f_a\|_{D_{\alpha}^p}\leq C' \ (C'a无关).

再由T_\psi的有界以性及T_\psi(f)(0)=0\begin{eqnarray*} \sup_{a\in B_n}\int_{B_n}\frac{|R\psi(z)|^q(1-|a|^2)^{q}{\rm d}v_\beta(z)}{|1-\langle a,z\rangle |^{\frac{q(n+1+\alpha)}{p}}}&=& \sup_{a\in B_n}\int_{B_n}|R\psi(z)|^q|f_a(z)|^q{\rm d}v_\beta(z)\\ &=&\sup_{a\in B_n}\|T_\psi(f_a)\|^q_{D_{\beta^q}}\\ &\leq & C\sup_{a\in B_n}\|f_a\|^{\frac{q}{p}}_{D_{\alpha}^p}<C''. \end{eqnarray*}

(i),(iii)的必要性得证.

p=n+1+\alpha时,令 f_a(z)=(\log\frac{2}{1-|a|^2})^{-\frac{2}{p}}(\log\frac{2}{1-\langle a,z\rangle })^{1+\frac{2}{p}},由引理 2.7 容易证得f_a(z)\in D_{\alpha}^p\|f_a\|_{D_{\alpha}^p}\leq C \ (Ca无关),类似前面我们可以证得(3.3)式成立.

\bf 定理2\psi\in H(B_n),0<p\leq q<\infty,\alpha,\ \beta>-1. 则

(i) 当0<p\leq 1或当1<p<1+\alpha时,T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子的充要条件为\psi\in D_{\beta}^q \lim_{|a|\rightarrow 1}\int_{B_n}\frac{|R\psi(z)|^q(1-|a|^2)^{q}{\rm d}v_\beta(z)}{|1-\langle a,z\rangle |^{\frac{q(n+1+\alpha)}{p}}}=0; o(3.6)

(ii) 当p>n+1+\alpha时,T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子的充要条件为\psi\in D_{\beta}^q;

(iii) 当1<p<n+1+\alpha\alpha+1\leq p时,若 T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子,则(3.6)式成立; 若\psi\in D_{\beta}^q且存在s>0,使得 \lim_{|a|\rightarrow 1}\int_{B_n}\frac{|R\psi(z)|^q(1-|a|^2)^{q}{\rm d}v_\beta(z)}{|1-\langle a,z\rangle |^{\frac{q(n+1+\alpha+s)}{p}}}=0,(3.7) T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子;

(iv) 当p=n+1+\alpha时,若T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子,则 \lim_{|a|\rightarrow 1}\int_{B_n}|R\psi(z)|^q \bigg(\log\frac{2}{1-|a|^2}\bigg)^{-\frac{2q}{p}} \bigg|\log\frac{2}{1-\langle a,z\rangle }\bigg|^{q+\frac{2q}{p}}{\rm d}v_\beta(z)=0; (3.8) \psi\in D_{\beta}^q \int_{B_n}|R\psi(z)|^q\bigg(\log{\frac{2}{1-|z|^2}}\bigg)^q{\rm d}v_\beta(z)<\infty,(3.9)

T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子.

\bf 证 我们先证充分性. 设\{f_{j}\}为在B_n的任一紧子集上一致收敛于0且满足 \|f_{j}\|_{D_\alpha^p}\leq 1的序列. 则 \begin{eqnarray*} \left(\|T_\psi(f_j)\|_{D_\beta^q}\right)^{p} &=& \left(|T_\psi(f_j)(0)|^q+ \int_{B_n}|R(T_\psi(f_j))(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}} \\ &=&\left(\int_{B_n}|R\psi(z)f_j(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}. \end{eqnarray*}

若(3.6)、(3.7)和(3.9)式成立,且\psi\in D_{\beta}^q,则容易证明存在常数M>0使得 \sup_{a\in B_n}\int_{B_n}\frac{|R\psi(z)|^q(1-|a|^2)^{q}{\rm d}v_\beta(z)}{|1-\langle a,z\rangle |^{\frac{q(n+1+\alpha)}{p}}}< M; (3.10) \sup_{a\in B_n}\int_{B_n}\frac{|R\psi(z)|^q(1-|a|^2)^{q}{\rm d}v_\beta(z)}{|1-\langle a,z\rangle |^{\frac{q(n+1+\alpha+s)}{p}}}< M; (3.11) 且对任给的0<\varepsilon<1,存在0 < {\rm{ }}{r_0} < 1,使得当|a|>r_0时有

\int_{B_n}\frac{|R\psi(z)|^q(1-|a|^2)^{q}{\rm d}v_\beta(z)}{|1-\langle a,z\rangle |^{\frac{q(n+1+\alpha)}{p}}}<\varepsilon; (3.12)
\int_{B_n}\frac{|R\psi(z)|^q(1-|a|^2)^{q}{\rm d}v_\beta(z)}{|1-\langle a,z\rangle |^{\frac{q(n+1+\alpha+s)}{p}}}< \varepsilon; (3.13)
\int_{B_n-r_0 B_n}|\psi(z)|^q{\rm d}v_\beta(z)<\varepsilon; (3.14)
\int_{B_n-r_0 B_n}|R\psi(z)|^q\bigg(\log{\frac{2}{1-|z|^2}}\bigg)^q{\rm d}v_\beta(z)<\varepsilon. (3.15)
同时对上述的\varepsilon存在{J_0},当j>J_0时,对一切的z\in\{w:|w|\leq r_0\}
|f_j(z)|<\varepsilon,\ \ \ \ \ |Rf_j(z)|<\varepsilon. (3.16)

(i) (a) 当0<p\leq 1时,由Minkowski不等式、引理2.5、(3.10)、(3.12)和(3.16)式得,对j>J_0以及充分大的 \gamma>\alpha+p>-1\begin{eqnarray*} && \left(\|T_\psi(f_j)\|_{D_\beta^q}\right)^{p}=\left(\int_{B_n}|R\psi(z)f_j(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}\\ &\leq& C\left(\int_{B_n}\left(\int_{B_n}\frac{|Rf_j(w)|^p}{|1-\langle z,w\rangle |^{n+1+\gamma-p}}{\rm d}v_{\gamma}(w)\right)^{\frac{q}{p}}|R\psi(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}\\ &\leq&C\int_{B_n}\left(\int_{B_n}\frac{|Rf_j(w)|^q|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^{\frac{q}{p}(n+1+\gamma-p)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v_{\gamma}(w)\\ &\leq & C\int_{B_n}|Rf_j(w)|^p(1-|w|^2)^{\alpha}\left(\int_{B_n}\frac{(1-|w|^2)^{\frac{q}{p}(\gamma-\alpha)}|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^ {\frac{q}{p}(n+1+\gamma-p)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v(w)\\ &\leq & C\bigg(\int_{r_0B_n}+\int_{B_n-r_0B_n}\bigg)|Rf_j(w)|^p(1-|w|^2)^{\alpha}\left(\int_{B_n}\frac{(1-|w|^2)^{q}|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^ {\frac{q}{p}(n+1+\alpha)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v(w)\\ &\leq &CM^{\frac{p}{q}}\int_{r_0B_n}|Rf_j(w)|^p(1-|w|^2)^{\alpha}{\rm d}v(z)+C\varepsilon^{\frac{p}{q}}\int_{B_n-r_0B_n}|Rf_j(w)|^p(1-|w|^2)^{\alpha}{\rm d}v(z)\\ &\leq&C(M^{\frac{p}{q}}\varepsilon^p+\varepsilon^{\frac{p}{q}}\|f_j\|^p_{D_\alpha^p}) \leq C(M^{\frac{p}{q}}\varepsilon^p+\varepsilon^{\frac{p}{q}}). \end{eqnarray*} 所以T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子.

(b) 当1<p<1+\alpha时,类似有界性的证明,对充分大的\gamma>\max\{\alpha,\frac{1+\alpha}{p}\}>1\begin{eqnarray*} |f_j(z)|^p&\leq& C\int_{B_n}\frac{|f_j(w)|^p}{|1-\langle z,w\rangle |^{(n+1+\gamma)}}{\rm d}v_\gamma(w)\\ &\leq& C \int_{B_n}\frac{1}{|1-\langle z,w\rangle |^{n+1+\gamma}} \left(\int_{B_n}\frac{|Rf_j(\eta)|}{|1-\langle w,\eta\rangle |^{n+\gamma}}{\rm d}v_\gamma(\eta)\right)^p{\rm d}v_\gamma(w). \end{eqnarray*} 由Minkowski不等式、引理2.1、(3.10)、(3.12)以及(3.16)式得,对j>J_0\begin{eqnarray*} &&\left(\|T_\psi(f_j)\|_{D_\beta^q}\right)^{p}=\left(\int_{B_n}|R\psi(z)f_j(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}\\ &\leq& C\int_{B_n} |f_j(w)|^p\left(\int_{B_n}\frac{(1-|w|^2)^q|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^{\frac{q}{p}(n+1+\alpha)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v_{\alpha-p}(w)\\ &=& C\bigg(\int_{r_0B_n}+\int_{B_n-r_0B_n}\bigg) |f_j(w)|^p\left(\int_{B_n}\frac{(1-|w|^2)^q|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^{\frac{q}{p}(n+1+\alpha)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v_{\alpha-p}(w)\\ &\leq& C\left(M^{\frac{p}{q}}\varepsilon^p+\varepsilon^{\frac{p}{q}}\int_{B_n} |f_j(w)|^p{\rm d}v_{\alpha-p}(w)\right)\\ &\leq& C\left(M^{\frac{p}{q}}\varepsilon^p+\varepsilon^{\frac{p}{q}} \int_{B_n}\left(\int_{B_n}\frac{|Rf(\eta)(1-|\eta|^2)|(1-|\eta|^2)^{\gamma-1}}{|1-\langle w,\eta\rangle |^{n+\gamma}}{\rm d}v(\eta)\right)^p{\rm d}v_{\alpha-p}(w)\right)\\ &\leq& C(M^{\frac{p}{q}}\varepsilon^p+\varepsilon^{\frac{p}{q}}\|f_j\|^p_{D_\alpha^p})\leq C(M^{\frac{p}{q}}\varepsilon^p+\varepsilon^{\frac{p}{q}}). \end{eqnarray*} 所以T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子.

(ii) 当p>n+1+\alpha时,若\psi\in D_{\beta}^q,则 由引理2.6、(3.14)和(3.16)式得,当j>J_0时有 \begin{eqnarray*} \|T_\psi(f_j)\|^q_{D_\beta^q} &=&\int_{B_n}|R\psi(z)f_j(z)|^{q}{\rm d}v_\beta(z)= \bigg(\int_{r_0B_n}+\int_{B_n-r_0B_n}\bigg)|R\psi(z)f_j(z)|^{q}{\rm d}v_\beta(z)\\ &\leq& C\left(\varepsilon^q\|\psi\|_{D_\beta^q}+\|f\|_{D_\alpha^p}\int_{B_n-r_0B_n}|R\psi(z)|^{q}{\rm d}v_\beta(z)\right)\leq C(\varepsilon^q\|\psi\|_{D_\beta^q}+\varepsilon). \end{eqnarray*} 所以T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子.

(iii) 当1<p<n+1+\alpha\alpha+1\leq p时,若(3.7)式成立,则 由Minkowski不等式、引理2.5、(3.11)、(3.13)和(3.16)式类似(i)_{(a)}的证明得,对充分大的 \gamma>\frac{1+\alpha}{p}>-1\begin{eqnarray*} && \left(\|T_\psi(f_j)\|_{D_\beta^q}\right)^{p}=\left(\int_{B_n}|R\psi(z)f_j(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}\\ &\leq& C\left(\int_{B_n}\left(\frac{|Rf_j(w)|^p}{|1-\langle z,w\rangle |^{n+1+\gamma+s-p}}{\rm d}v_{\gamma}(w)\right)^{\frac{q}{p}}|R\psi(z)|^{q}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}\\ &\leq & C\int_{B_n}|Rf_j(w)|^p(1-|w|^2)^{\alpha}\left(\int_{B_n}\frac{(1-|w|^2)^{q}|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^ {\frac{q}{p}(n+1+\alpha+s)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v(w)\\ &\leq&C\bigg(\int_{r_0B_n}+\int_{B_n-r_0B_n}\bigg)|Rf_j(w)|^p(1-|w|^2)^{\alpha}\left(\int_{B_n}\frac{(1-|w|^2)^{q}|R\psi(z)|^{q}}{|1-\langle z,w\rangle |^ {\frac{q}{p}(n+1+\alpha+s)}}{\rm d}v_\beta(z)\right)^{\frac{p}{q}}{\rm d}v(w)\\ &\leq& C(M^{\frac{p}{q}}\varepsilon^p+\varepsilon^{\frac{p}{q}}\|f_j\|^p_{D_\alpha^p})\leq C(M^{\frac{p}{q}}\varepsilon^p+\varepsilon^{\frac{p}{q}}). \end{eqnarray*} 所以T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子.

(iv) 当p=n+1+\alpha时,若\psi\in D_{\beta}^q且(3.9)式成立, 则由引理2.6、(3.15)和(3.16)式得 \begin{eqnarray*} \|T_\psi(f_j)\|^q_{D_\beta^q} &=&\int_{B_n}|R\psi(z)f_j(z)|^{q}{\rm d}v_\beta(z)\\ &\leq&C\bigg(\int_{r_0B_n}+\int_{B_n-r_0B_n}\bigg)|R\psi(z)f_j(z)|^{q}{\rm d}v_\beta(z)\\ &\leq& C\left(\varepsilon^q\|\psi\|^q_{D_\beta^q} +\|f_j\|_{D_\alpha^p}^{q}\int_{B_n-r_0B_n}|R\psi(z)|^q \bigg(\log{\frac{2}{1-|z|^2}}\bigg)^q{\rm d}v_\beta(z)\right)\\ &\leq& C(\varepsilon^q\|\psi\|^q_{D_\beta^q}+\varepsilon ) . \end{eqnarray*} 所以T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子.

必要性: 若T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是紧算子, 则T_\psi:D_{\alpha}^p \rightarrow D_{\beta}^q是有界算子. 取f=1\psi\in D_{\beta}^q,则(ii)的必要性得证.

任取a_j\in B_n|a_j|\rightarrow 1(j\rightarrow\infty), 当0<p<n+1+\alpha时,令 f_j(z)=\frac{(1-|a_j|^2)} {(1-\langle z,a_j\rangle)^\frac{n+1+\alpha}{p}},则 \{f_{j}\}B_n上内闭一致收敛于0且\|f_j\|_{D_\alpha^p}\leq c, 再根据T_\psi的紧性知 {\lim\limits_{j\rightarrow \infty}\|T_{\psi}f_{j}\|_{D_\beta^q}=0}.

T_\psi(f_j)(0)=0 \int_{B_n}\frac{|R\psi(z)|^q(1-|a_j|^2)^{q}{\rm d}v_\beta(z)} {|1-\langle a_j,z\rangle |^{\frac{q(n+1+\alpha)}{p}}}= \int_{B_n}|R\psi(z)|^q|f_j(z)|^q{\rm d}v_\beta(z)=\|T_\psi(f_j)\|_{D_{\beta}^q}^q. 所以 \lim_{j\rightarrow\infty}\int_{B_n}\frac{|R\psi(z)|^q (1-|a_j|^2)^{q}{\rm d}v_\beta(z)}{|1-\langle a_j,z\rangle |^{\frac{q(n+1+\alpha)}{p}}}=0. a_j的任意性得 \lim_{|a|\rightarrow 1}\int_{B_n}\frac{|R\psi(z)|^q(1-|a|^2)^{q} {\rm d}v_\beta(z)}{|1-\langle a,z\rangle |^{\frac{q(n+1+\alpha)}{p}}}=0. (i),(iii)的必要性得证.

p=n+1+\alpha时,令 f_j(z)= (\log\frac{2}{1-|a_j|^2})^{-\frac{2}{p}} (\log\frac{2}{1-\langle a_j,z\rangle })^{1+\frac{2}{p}} 类似可以证得(3.8)式成立.

参考文献
[1] Siskakis A. Composition semigroups and the Cesàro operator on H^{p}. J Lond Math Soc, 1987, 36(2): 153-164
[2] Xiao J. Cesàro-type operators on Hardy BMOA and Bloch spaces. Arch Math, 1997, 68(5): 398-406
[3] 肖杰,谭海欧. 论 p-Bergman, \alpha-Bloch, 小\alpha-Bloch空间与Cesàro平均. 数学年刊, 1998, 19A(2): 187-196
[4] Aleman A, Siskakis A. An integral operator on H^{p}. Complex Variables, 1995, 28(2): 149-158
[5] Aleman A, Siskakis A. Integrationoperators on Bergman spaces. Indiana Univ Math J, 1997, 46(2): 337-356
[6] Shi J H, Ren G B. Boundedness of the Cesàro operator on mixed norm spaces. Proc Amer Math Soc, 1998, 126(12): 3553-3560
[7] Miao J. The Cesàro operator is bounded on H^{p} for 0<p<1. Proc Amer Math Soc, 1992, 116(4): 1077-1079
[8] Hu Z J. Extended Cesàro operators on the Bloch space in the unit Ball of C^{n}. Acta Math Sci, 2003, 23B(4): 561-566
[9] Hu Z J. Extended Cesàro operators on mixed norm spaces. Proc Amer Math Soc, 2003, 131(7): 2171-2197
[10] Lv X F. Extended Cesàro operators and multipliers on BMOA. Acta Math Sci, 2013, 33B(3): 559-567
[11] 张学军. C^n中Dirichlet型空间和Bloch型 空间上的加权Cesàro算子. 数学年刊, 2005, 26A(1): 139-150
[12] Peng R, Ouyang C H. Carleson measures for Besov-Sobolev spaces with applications in the unit ball of C^n. Acta Math Sci, 2013, 33B(5): 1219-1230
[13] Zhu K H. Spaces of Holomorphic Functions in the Unit Ball. New York: Springer-Verlag, 2005
[14] Zhang X J, Xiao J B, Hu Z J. The multipliers between the mixed norm spaces in C^n. J Math Anal Appl, 2005, 311(2): 664-674
[15] Sheids A L, Williams D L. Bounded projections, duality and multipliers in spaces of analytic functions. Trans Amer Math Soc, 1971, 167: 253-268
[16] Zhou Z H, Chen R Y. Weighted composition operator from F(p,q,s) to Bloch type spaces on the unit Ball. Int J Math, 2008, 19(8): 899-926
C^n中单位球上Dirichlet型空间的Cesàro 算子
刘竟成, 李俊锋,张学军