数学物理学报  2015, Vol. 35 Issue (1): 50-55   PDF (254 KB)    
扩展功能    
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章    
高黎明
一类含双参量边值问题的多重解
高黎明    
包头铁道职业技术学院 数学系 内蒙古包头 014000
摘要    :运用 Bonanno创立的变分法讨论一类带双参变量的斯图姆-刘维尔边值问题多重解的存在性. 尤其是在非线性扰动下, 找到了其三解的存在性..
关键词临界点     三解     斯图姆-刘维尔边值问题    
Multiplicity Results for A Boundary Value Problem with Double Parameter
GAO Li-Meng    
Mathematics Department, Baotou Railway Vocational Technical College,Inner Mongolia |Baotou 014000
Abstract    : The aim of this note is to establish the existence of multiple solutions for Sturm-Liouville boundary value problems.Proofs are based on variational methods as developed in the important works of Bonanno. In particular, the existence of three solutions for a Sturm-Liouville problem, even under a perturbation of the nonlinearity, is established.
Key words: Critical points     Three solutions     Sturm-Liouville boundary value problems     
1 引言

本文,我们研究以下两点边值问题(简称$P_{λ,μ}$) $$(P_{λ,μ})\left\{ \begin{array}{ll} -(\rho\phi_p(x'))'+s\phi_p(x)=λf(x)+μg(t,x), t\in[a,b],\\ α'(a)-β(a)=0,γ'(b)+δ(b)=0, \end{array}\right.$$ 其中$\phi_p(s)=|s|^{p-2}s,1<p<+\infty,\rho,sL^\infty([a, b])$有ess$\inf_{[a,b]}\rho>0$且ess$\inf_{[a,b]}s>0,$$\alpha, \beta,\gamma,\sigma>0,f:R→R$连续,$g:[a,b]R→R$为 $L^1$-卡拉泰奥多里泛函,$λ,μ$为两个正参量.

最近,在文献[1, 3]中,Bonanno提出并推广了许多研究非线性 本特征问题的变分法.Bonanno和Riccobono,Tian和 Ge分别在其论文[2][4]中研究了此类问题, 得出了对任意$\lambda\in\Lambda$,存在$\Lambda$实区间, 使得$P_{\lambda,\mu}$问题至少存在三个弱解.关于此类 问题的其他研究成果,参考文献[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

本文,增加一个扰动,我们找到了相应的$\lambda$和$\mu$值,使得$P_{\lambda,\mu}$问题至少存在三个弱解.确切地讲,我们的主要结论-定理1给出了参变量的值. 进一步,定理2,给出了参变量$\lambda$和$\mu$在不要求泛函$g$的渐近条件下,解的数值上界.而且,很显然可以得出当$\mu=0,p\equiv s\equiv1,a=0$及$b=1$,定理1即为文献[2]中定理(见附注1).

2 预备知识

我们的结论建立在文献[3]的三临界点理论和文献[1]中定理3.2之上,方便起见,分别引述如下(引理1,引理2).

引理1    [3,定理2.6] $X$是一个自反的实巴拉赫空间,泛函$\Phi:X→R$是强制的,连续加托可微且满足序列弱下半连续,其加托导数存在一个定义在$X^*$上的连续反函数,泛函$\Psi:X→R$连续加托可微,其 加托导数是紧致的且满足 $$ \Phi(0)=\Psi(0)=0. $$ 假定存在$r>0$和$\bar{x}∈X$,满足 $r<\Phi(\bar{x})$,使得

$(a_1)~\frac{\sup\limits_{\Phi(x)≤ r}}{r}<\frac{\Psi(\bar{x})}{\Phi(\bar{x})}$;

$(a_2)$~对任意$\lambda\in \Lambda_r:=\bigg(\frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \frac{r}{\sup\limits_{\Phi(x)≤r}\Psi(x)}\bigg)$,泛函 $\Phi-\lambda\Psi$是强制的.

那么,对任意$\lambda\in\Lambda_r$,泛函$\Phi-\lambda\Psi$至少存在三个互异的临界点属于$X$.

引理2    [1,推论3.1] $X$是一个自反的实巴拉赫空间,泛函$\Phi:X→R$是凸的,强制的,连续加托可微,其加托导数存在一个定义在$X^*$上的连续反函数,泛函$\Psi:X→R$连续加托可微,其 加托导数是紧致的且满足 $$ \inf\limits_X\Phi=\Phi(0)=\Psi(0)=0. $$ 假定存在两个正常量$r_1,r_2$和 $\bar{x}∈X$,满足$2r_1<\Phi(\bar{x})<\frac{r_2}{2}$,使得

$(b_1)$~$\frac{\sup\limits_{x\in\Phi^{-1}((-\infty, r_1))}\Psi(x)}{r_1}<\frac{2}{3}\frac{\Psi(\bar{x})}{\Phi(\bar{x})}$;

$(b_2)$~$\frac{\sup\limits_{x\in\Phi^{-1}((-\infty, r_2))}\Psi(x)}{r_2}<\frac{1}{3}\frac{\Psi(\bar{x})}{\Phi(\bar{x})}$;

$(b_3)$~对任意$\lambda\in\Lambda'_{r_1, r_2}:=\bigg(\frac{3}{2}\frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \min\big\{\frac{r_1}{\sup\limits_{x\in\Phi^{-1}((-\infty, r_1))}\Psi(x)},\frac{r_2}{2\sup\limits_{x\in\Phi^{-1}((-\infty, r_2))}\Psi(x)}\big\}\bigg)$及$x_1,$$x_2∈X$,关于泛函 $\Phi-\lambda\Psi$存在局部极小值,且满足$\Psi(x_1)\geq0$ 和$\Psi(x_2)\geq0$有 $$\inf\limits_{t\in[0, 1]}\Psi(tx_1+(1-t)x_2)\geq0. $$ 则,对任意$\lambda\in\Lambda'_{r_1,r_2}$,泛函 $\Phi-\lambda\Psi$存在三个临界点属于$\Phi^{-1}((-\infty,r_2))$.

3 主要结论及证明

整文规定,$F(\xi)=\int_0^ε(x){d}x,\xi∈R, G(t,\xi)=\int_0^ε(t,x){d}x,(t, \xi)\in[a,b]×R$.记 $G^c:=\int^b_a\max\limits_{|\xi|≤c}G(x,\xi){d}x,c>0$及 $G_d:=\inf\limits_{[a,b]}G(t,d),d>0$.显然,$G^c\geq0$且 $G_d≤0$.

记 $$ k_d:=\frac{\gamma\rho(b)}{δp}\bigg|\frac{\sigma d}{\gamma}\bigg|^p+\frac{\alpha\rho(a)}{βp}\bigg|\frac{\beta d}{\alpha}\bigg|^p,\qquad M=2^{\frac{p-1}{p}}\cdot\frac{1}{(b-a)^{\frac{1}{p}}}\bigg[\max\bigg\{\frac{1}{\mbox{ess}\inf s};\frac{(b-a)^p}{\mbox{ess}\inf\rho}\bigg\}\bigg]^{\frac{1}{p}}. $$

进一步,取定$c,d>0$使得 $\frac{d^p\|s\|_{L^1}+pk_d}{p(b-a)F(d)}<\frac{c^p}{pM^p(b-a)F(c)}$ 且取 $$ \lambda\in\Lambda:=\bigg(\frac{d^p\|s\|_{L^1}+pk_d}{p(b-a)F(d)}, \frac{c^p}{pM^p(b-a)F(c)}\bigg), $$ 令 $$ \delta_{\lambda,g}:=\min\bigg\{\frac{c^p-\lambda pM^p(b-a)F(c)}{pM^pG^c}, \frac{\lambda(b-a)F(d)-d^p\|s\|_{L^1}-pk_d}{-p(b-a)G_d}\bigg\} (3.1) $$ 和 $$ \overline{\delta}_{\lambda,g}:=\min\Bigg\{\delta_{\lambda,g}, \frac{p}{\max\Big\{0,\limsup\limits_{|\xi|\rightarrow +\infty}\frac{\sup\limits_{t\in[a,b]}G(t,\xi)}{\xi^p}\Big\}}\Bigg\}, (3.2) $$ 其中,我们说$\frac{r}{0}=+\infty$,因此当 $\limsup\limits_{|\xi|\rightarrow+\infty}\frac{\sup\limits_{t\in[a, b]}G(t,\xi)}{\xi^p}≤0$及$G_d=G^c=0$,有 $\overline{\delta}_{\lambda,g}=+\infty$.

接下来,阐述我们的主要结论.

定理1    若存在两个正参量$c,d$满足 $0<c<\|s\|^{\frac{1}{p}}_{L^1}Md$使得

(i)~$f(\xi)\geq0,\xi\in[-c,d]$;

(ii)~ $\frac{M^pF(c)}{c^p}<\frac{F(d)}{d^p\|s\|_{L^1}+pk_d}$;

(iii)~ $\limsup\limits_{|\xi|\rightarrow+\infty}\frac{F(\xi)}{\xi^p}≤ 0$.

则,对任意 $\lambda\in\Lambda:=\bigg(\frac{d^p\|s\|_{L^1}+pk_d}{p(b-a)F(d)}, \frac{c^p}{pM^p(b-a)F(c)}\bigg)$及任意 $L^1$-卡拉泰奥多里泛函$g:[a, b]×R→R$满足

(iv)~ $\limsup\limits_{|\xi|\rightarrow+\infty}\frac{\sup\limits_{t\in[a,b]} G(t,\xi)}{\xi^p}<+\infty$,

存在$(3.2)$式给定的$\overline{\delta}_{\lambda,g}>0$满足对任意$\mu\in[0, \overline{\delta}_{\lambda,g})$,$(P_{\lambda,\mu})$问题至少存在三个弱解.

    取结论中要求的$\lambda,g$和$\mu$.给空间$X=W^{1,p}([a,b])$赋范 $$ \|x\|=\bigg(\int_a^b(\rho(t)|x(t)'|^p+s(t)|x(t)|^p){d}t\bigg)^\frac{1}{p}, (3.3) $$ 此等价于一般赋范空间,因为$\rho,s∈L^\infty([a, b])$和ess$\inf_{[a,b]}\rho>0$及ess$\inf_{[a,b]}s>0$.而且, 对任意$x∈X$,记 $$ \Phi(x)=\frac{1}{p}\|x\|^p+\frac{\gamma\rho(b)}{\sigma p}\bigg|\frac{\sigma x(b)}{\gamma}\bigg|^p+\frac{\alpha\rho(a)}{βp}\bigg|\frac{\beta x(a)}{\alpha}\bigg|^p $$ 和 $$ \Psi(x)=\int^b_a\big[F(x(t))+\frac{\mu}{\lambda}G(t,x(t))\big]{d}t. $$

由文献[4,引理2.1],$(P_{\lambda,\mu})$问题的弱解即为泛函$\Phi-\lambda\Psi$的临界点.于是,我们需要用到引理1中.为此, 鉴于文献[4,引理2.3和引理2.4],泛函$\Phi$ 和$\Psi$显然满足引理1的条件.而且,条件(iii)和(iv)蕴含着泛函 $\Phi-\lambda\Psi$是强制的.

接下来,我们证明引理1中的条件(i)和(ii).事实上, 取定$r=\frac{c^p}{pM^p},\bar{x}(t)=d,\in[a,b]$,可得$\bar{x}∈X,\Phi(0)=\Psi(0)=0, \Phi(\bar{x})=\frac{\|s\|_{L^1}}{p}d^p+k_d, \Psi(\bar{x})=(b-a)F(d)+\frac{\mu}{\lambda}\int_a^bG(t,\\ d){d}t\geq(b-a)F(d)+\frac{\mu}{\lambda}(b-a)G_d$. 因此,我们有 $$ \frac{\Psi(\bar{x})}{\Phi(\bar{x})}\geq\frac{(b-a)F(d)+\frac{\mu}{\lambda}(b-a)G_d}{\frac{\|s\|_{L^1}}{p}d^p+k_d} =\frac{p(b-a)F(d)}{d^p\|s\|_{L^1}+pk_d}+\frac{\mu}{\lambda}\cdot\frac{p(b-a)G_d}{d^p\|s\|_{L^1}+pk_d}, $$ 这意味着 $$ \frac{\Psi(\bar{x})}{\Phi(\bar{x})}\geq \frac{p(b-a)F(d)}{d^p\|s\|_{L^1}+pk_d}+\frac{\mu}{\lambda}\cdot\frac{p(b-a)G_d}{d^p\|s\|_{L^1}+pk_d}, (3.4) $$ 而且,由$0<c<\|s\|^{\frac{1}{p}}_{L^1}Md$,可得 $0<r<\Phi(\bar{x})$.

另一方面,对任意$x∈X$满足$\Phi(x)≤r$, 我们有$\|x\|≤(pr)^{\frac{1}{p}}$,且由文献[2,附注 2.1],有$\|x\|_\infty≤c$.于是, $$ \frac{\sup\limits_{\Phi(x)≤r}\Psi(x)}{r}≤ \frac{(b-a)F(c)+\frac{\mu}{\lambda}G^c}{\frac{c^p}{pM^p}} ≤\frac{pM^p(b-a)F(c)}{c^p}+\frac{\mu}{\lambda}\cdot\frac{pM^pG^c}{c^p}, $$ 此即 $$ \frac{\sup\limits_{\Phi(x)≤ r}\Psi(x)}{r}≤\frac{pM^p(b-a)F(c)}{c^p}+\frac{\mu}{\lambda}\cdot\frac{pM^pG^c}{c^p}. (3.5) $$ 因为$\mu<\delta_{\lambda,g}$,我们有 $$ \mu<\frac{c^p-λpM^p(b-a)F(c)}{pM^pG^c},\qquad \frac{pM^p(b-a)F(c)}{c^p}+\frac{\mu}{\lambda}\cdot\frac{pM^pG^c}{c^p}<\frac{1}{\lambda} $$ 和 $$ \mu<\frac{\lambda(b-a)F(d)-d^p\|s\|_{L^1}-pk_d}{-p(b-a)G_d},\qquad \frac{1}{\lambda}<\frac{p(b-a)F(d)}{d^p\|s\|_{L^1}+pk_d}+\frac{\mu}{\lambda}\cdot\frac{p(b-a)G_d}{d^p\|s\|_{L^1}+pk_d}, $$ 也就是 $$ \frac{pM^p(b-a)F(c)}{c^p}+\frac{\mu}{\lambda}\cdot\frac{pM^pG^c}{c^p} <\frac{1}{\lambda}<\frac{p(b-a)F(d)}{d^p\|s\|_{L^1}+pk_d}+\frac{\mu}{\lambda}\cdot\frac{p(b-a)G_d}{d^p\|s\|_{L^1}+pk_d}. (3.6) $$

因此,由(3.4),(3.5)和(3.6)式,引理1的条件$(a_1)$得证且 $$ \lambda\in\bigg(\frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \frac{r}{\sup\limits_{\Phi(x)≤r}\Psi(x)}\bigg). $$ 由引理1可知泛函$\Phi-\lambda\Psi$存在三个临界点,证毕.

附注1    显然,当$\mu=0,p\equiv s\equiv1, a=0$且$b=1$,定理1也就是文献[2,定理1.1].

现在证明定理1的一个变形定理,定理2不要求条件(iv)中泛函$g$ 的渐近性.取$c_1,c_2,$$d>0$满足 $\frac{3}{2}\cdot\frac{d^p\|s\|_{L^1}+pk_d}{p(b-a)F(d)}<\min\big\{\frac{c_1^p}{pM^p(b-a)F(c_1)}, \frac{c_2^p}{2pM^p(b-a)F(c_2)}\big\}$且 $$ \lambda\in\Lambda:=\bigg(\frac{3}{2}\cdot\frac{d^p\|s\|_{L^1}+pk_d}{p(b-a)F(d)}, \min\big\{\frac{c_1^p}{pM^p(b-a)F(c_1)}, \frac{c_2^p}{2pM^p(b-a)F(c_2)}\big\}\bigg), $$ 令 $$ \delta^*_{\lambda,g}:=\min\bigg\{\frac{c_1^p-\lambda pM^p(b-a)F(c_1)}{pM^pG^{c_1}},\frac{c_2^p-\lambda pM^p(b-a)F(c_2)}{2pM^pG^{c_2}}\bigg\}.(3.7) $$

定理2    若存在三个正参量$c_1,c_2,d$满足 $(2L)^{\frac{1}{p}}c_1<d<(\frac{L}{2})^{\frac{1}{p}}c_2$,使得

(i)~$f(\xi)\geq0,\xi\in[0,c_2]$;

(ii)~ $\frac{M^pF(c_1)}{c_1^p}<\frac{2}{3}\cdot\frac{F(d)}{d^p\|s\|_{L^1}+pk_d}$;

(iii)~ $\frac{M^pF(c_2)}{c_2^p}<\frac{1}{3}\cdot\frac{F(d)}{d^p\|s\|_{L^1}+pk_d}$.

则,对任意 $\lambda\in\Lambda:=\bigg(\frac{3}{2}\cdot\frac{d^p\|s\|_{L^1}+pk_d}{p(b-a)F(d)}, \min\big\{\frac{c_1^p}{pM^p(b-a)F(c_1)}, \frac{c_2^p}{2pM^p(b-a)F(c_2)}\big\}\bigg)$和任意 $L^1$-卡拉泰奥多里泛函$g:[a, b]×R→R$,存在$(3.7)$式中给定的 $\delta^*_{\lambda,g}>0$使得对任意 $\mu\in(0,\delta^*_{\lambda,g})$,$(P_{\lambda,\mu})$问题 至少存在三个弱解$x_i,i=1,2,3$满足 $$ 0<x_i(t)<c_2\qquad∀t\in[a,b],i=1,2,3. $$

    取结论中给定的$\lambda,g$和$\mu$ 及定理1证明中给定的$X,\Phi$和$\Psi$. 不难看出$\Phi$和$\Psi$满足引理2中条件,且由最大值原则, $(b_3)$成立,我们接下来要证明$(b_1)$和$(b_2)$. 为此,取(3.3)式中$\bar{x},r_1=\frac{c_1^p}{pM^P}, r_2=\frac{c_2^p}{pM^P}$.于是,我们有 $2r_1<\Phi(\bar{u})<\frac{r_2}{2}$,且由 $\mu<\delta^*_{\lambda,g}$, \begin{eqnarray*} \frac{\sup\limits_{\Phi(x)≤r_1}\Psi(x)}{r_1} &≤& \frac{pM^p(b-a)F(c_1)}{c_1^p}+\frac{\mu}{\lambda}\cdot\frac{pM^pG^{c_1}}{c_1^p} <\frac{1}{\lambda} \\ &<&\frac{2}{3}\cdot\frac{p(b-a)F(d)}{d^p\|s\|_{L^1}+pk_d}+\frac{2\mu}{3\lambda}\cdot\frac{p(b-a)G_d}{d^p\|s\|_{L^1}+pk_d} ≤\frac{2}{3}\cdot\frac{\Psi(\bar{x})}{\Phi(\bar{x})}, \end{eqnarray*} \begin{eqnarray*} 2\frac{\sup\limits_{\Phi(x)≤ r_2}\Psi(x)}{r_2} &≤&\frac{2pM^p(b-a)F(c_2)}{c_2^p}+\frac{\mu}{\lambda}\cdot\frac{2pM^pG^{c_2}}{c_2^p}<\frac{1}{\lambda} \\ &<&\frac{2}{3}\cdot\frac{p(b-a)F(d)}{d^p\|s\|_{L^1}+pk_d}+\frac{2\mu}{3\lambda}\cdot\frac{p(b-a)G_d}{d^p\|s\|_{L^1}+pk_d} ≤\frac{2}{3}\cdot\frac{\Psi(\bar{x})}{\Phi(\bar{x})}. \end{eqnarray*}

因此,$(b_1)$和$(b_2)$成立,引理2保证泛函至少存在三个弱解,其范数小于 $\frac{c_2}{M}$.最后,由最大值原理和 $\|x\|_\infty≤c_2$,我们的结论得以证明.

参考文献
[1] Bonanno G, Candito P, Non-differential functionals and applications to elliptic problems with discontinuous nonlinearities. J Differential Equations, 2008, 244: 3031–3059
[2] Bonanno G, Riccobono G. Multiple results for Sturm-Liouville boundary value problems. Appl Math Comput, 2009, 210: 294–297
[3] Bonanno G, Marano S A. On the structure of the critical set of non-differential functionals with a weak compactness condition. Appl Anal, 2010, 89: 1–10
[4] Tian Y, Ge W. Second-order Sturm-Liouville boundary value problem involving the one-dimensional pLaplacian. Rocky Mountain J Math, 2008, 38: 309–327
[5] Bonanno G, Chinn`ı A. Existence of three solutions for a perturbed two-point boundary value problem,Applied Mathematics Letter, 2010, 23: 807–811
[6] Bonanno G, D’Agu`? G. Multiplicity results for a perturbed elliptic Neumann problem. Abstract and Applied Analysis, 2010, 2010: 1–10
[7] D’Agu`ı G. Existence results for a mixed boundary value problem with Sturm-Liouville equation. Adv Pure Appl Math, 2011: 237–248
[8] D’Agu`? G. Multiplicity results for nonlinear mixed boundary value problem. Bound Value Probl, 2012,12: 2012–134
[9] D’Agu`? G. Infinitely many solutions for a double Sturm-Liouville problem. J Global Optimization, 2012,54: 619–625
[10] Bonanno G, Chinn`? A. Existence of three solutions for a perturbed two-point boundary value problem.Appl Math Lett, 2010, 23: 807–811
[11] Bonanno G, Motreanu G, Winkert P. Variational-hemivariational inequalities with small perturbations of nonhomogeneous Neumann boundary conditions. J Math Anal Appl, 2011, 381: 627–637
[12] D’Agu`? G, Sciammetta A. Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions. Nonlinear Anal, 2012, 75: 5612–5619
[13] Heidarkhani S, Tian Y. Multiplicity results for a class of gradient systems depending on two parameters. Nonlinear Anal, 2010, 73: 547–554
[14] Gao L M. Existence of multiple solutions for a second-order difference equation with a parameter. Appl Math Comput, 2010, 216: 1592–1598
[15] Ding L, Tang C L. Positive solutions for critical quasilinear elliptic equations with mixed DirichletNeumann boundary conditions, Acta Mathematica Scientia, 2013, 33(2): 443–470