Processing math: 100%
  数学物理学报  2015, Vol. 35 Issue (1): 50-55   PDF (254 KB)    
扩展功能    
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章    
高黎明
一类含双参量边值问题的多重解
高黎明    
包头铁道职业技术学院 数学系 内蒙古包头 014000
摘要    :运用 Bonanno创立的变分法讨论一类带双参变量的斯图姆-刘维尔边值问题多重解的存在性. 尤其是在非线性扰动下, 找到了其三解的存在性..
关键词临界点     三解     斯图姆-刘维尔边值问题    
Multiplicity Results for A Boundary Value Problem with Double Parameter
GAO Li-Meng    
Mathematics Department, Baotou Railway Vocational Technical College,Inner Mongolia |Baotou 014000
Abstract    : The aim of this note is to establish the existence of multiple solutions for Sturm-Liouville boundary value problems.Proofs are based on variational methods as developed in the important works of Bonanno. In particular, the existence of three solutions for a Sturm-Liouville problem, even under a perturbation of the nonlinearity, is established.
Key words: Critical points     Three solutions     Sturm-Liouville boundary value problems     
1 引言

本文,我们研究以下两点边值问题(简称Pλ,μ) (Pλ,μ){(ρϕp(x))+sϕp(x)=λf(x)+μg(t,x),t[a,b],α(a)β(a)=0,γ(b)+δ(b)=0, 其中ϕp(s)=|s|p2s,1<p<+,ρ,sL([a,b])有essinf[a,b]ρ>0且essinf[a,b]s>0,α,β,γ,σ>0,f:RR连续,g:[a,b]RRL1-卡拉泰奥多里泛函,λ,μ为两个正参量.

最近,在文献[1, 3]中,Bonanno提出并推广了许多研究非线性 本特征问题的变分法.Bonanno和Riccobono,Tian和 Ge分别在其论文[2][4]中研究了此类问题, 得出了对任意λΛ,存在Λ实区间, 使得Pλ,μ问题至少存在三个弱解.关于此类 问题的其他研究成果,参考文献[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

本文,增加一个扰动,我们找到了相应的λμ值,使得Pλ,μ问题至少存在三个弱解.确切地讲,我们的主要结论-定理1给出了参变量的值. 进一步,定理2,给出了参变量λμ在不要求泛函g的渐近条件下,解的数值上界.而且,很显然可以得出当μ=0,ps1,a=0b=1,定理1即为文献[2]中定理(见附注1).

2 预备知识

我们的结论建立在文献[3]的三临界点理论和文献[1]中定理3.2之上,方便起见,分别引述如下(引理1,引理2).

引理1    [3,定理2.6] X是一个自反的实巴拉赫空间,泛函Φ:XR是强制的,连续加托可微且满足序列弱下半连续,其加托导数存在一个定义在X上的连续反函数,泛函Ψ:XR连续加托可微,其 加托导数是紧致的且满足 Φ(0)=Ψ(0)=0. 假定存在r>0ˉxX,满足 r<Φ(ˉx),使得

(a1) supΦ(x)rr<Ψ(ˉx)Φ(ˉx);

(a2)~对任意λΛr:=(Φ(ˉx)Ψ(ˉx),rsupΦ(x)rΨ(x)),泛函 ΦλΨ是强制的.

那么,对任意λΛr,泛函ΦλΨ至少存在三个互异的临界点属于X.

引理2    [1,推论3.1] X是一个自反的实巴拉赫空间,泛函Φ:XR是凸的,强制的,连续加托可微,其加托导数存在一个定义在X上的连续反函数,泛函Ψ:XR连续加托可微,其 加托导数是紧致的且满足 infXΦ=Φ(0)=Ψ(0)=0. 假定存在两个正常量r1,r2ˉxX,满足2r1<Φ(ˉx)<r22,使得

(b1)~supxΦ1((,r1))Ψ(x)r1<23Ψ(ˉx)Φ(ˉx);

(b2)~supxΦ1((,r2))Ψ(x)r2<13Ψ(ˉx)Φ(ˉx);

(b3)~对任意λΛr1,r2:=(32Φ(ˉx)Ψ(ˉx),min{r1supxΦ1((,r1))Ψ(x),r22supxΦ1((,r2))Ψ(x)})x1,x2X,关于泛函 ΦλΨ存在局部极小值,且满足Ψ(x1)0Ψ(x2)0inft[0,1]Ψ(tx1+(1t)x2)0. 则,对任意λΛr1,r2,泛函 ΦλΨ存在三个临界点属于Φ1((,r2)).

3 主要结论及证明

整文规定,F(ξ)=ε0(x)dx,ξR,G(t,ξ)=ε0(t,x)dx,(t,ξ)[a,b]×R.记 Gc:=bamax|ξ|cG(x,ξ)dx,c>0Gd:=inf[a,b]G(t,d),d>0.显然,Gc0Gd0.

kd:=γρ(b)δp|σdγ|p+αρ(a)βp|βdα|p,M=2p1p1(ba)1p[max{1essinfs;(ba)pessinfρ}]1p.

进一步,取定c,d>0使得 dpsL1+pkdp(ba)F(d)<cppMp(ba)F(c) 且取 λΛ:=(dpsL1+pkdp(ba)F(d),cppMp(ba)F(c)),δλ,g:=min{cpλpMp(ba)F(c)pMpGc,λ(ba)F(d)dpsL1pkdp(ba)Gd}(3.1)¯δλ,g:=min{δλ,g,pmax{0,lim sup|ξ|+supt[a,b]G(t,ξ)ξp}},(3.2) 其中,我们说r0=+,因此当 lim sup|ξ|+supt[a,b]G(t,ξ)ξp0Gd=Gc=0,有 ¯δλ,g=+.

接下来,阐述我们的主要结论.

定理1    若存在两个正参量c,d满足 0<c<s1pL1Md使得

(i)~f(ξ)0,ξ[c,d];

(ii)~ MpF(c)cp<F(d)dpsL1+pkd;

(iii)~ lim sup|ξ|+F(ξ)ξp0.

则,对任意 λΛ:=(dpsL1+pkdp(ba)F(d),cppMp(ba)F(c))及任意 L1-卡拉泰奥多里泛函g:[a,b]×RR满足

(iv)~ lim sup|ξ|+supt[a,b]G(t,ξ)ξp<+,

存在(3.2)式给定的¯δλ,g>0满足对任意μ[0,¯δλ,g),(Pλ,μ)问题至少存在三个弱解.

    取结论中要求的λ,gμ.给空间X=W1,p([a,b])赋范 x=(ba(ρ(t)|x(t)|p+s(t)|x(t)|p)dt)1p,(3.3) 此等价于一般赋范空间,因为ρ,sL([a,b])和essinf[a,b]ρ>0及essinf[a,b]s>0.而且, 对任意xX,记 Φ(x)=1pxp+γρ(b)σp|σx(b)γ|p+αρ(a)βp|βx(a)α|pΨ(x)=ba[F(x(t))+μλG(t,x(t))]dt.

由文献[4,引理2.1],(Pλ,μ)问题的弱解即为泛函ΦλΨ的临界点.于是,我们需要用到引理1中.为此, 鉴于文献[4,引理2.3和引理2.4],泛函ΦΨ显然满足引理1的条件.而且,条件(iii)和(iv)蕴含着泛函 ΦλΨ是强制的.

接下来,我们证明引理1中的条件(i)和(ii).事实上, 取定r=cppMp,ˉx(t)=d,[a,b],可得ˉxX,Φ(0)=Ψ(0)=0,Φ(ˉx)=sL1pdp+kd,Ψ(ˉx)=(ba)F(d)+μλbaG(t,d)dt(ba)F(d)+μλ(ba)Gd. 因此,我们有 Ψ(ˉx)Φ(ˉx)(ba)F(d)+μλ(ba)GdsL1pdp+kd=p(ba)F(d)dpsL1+pkd+μλp(ba)GddpsL1+pkd, 这意味着 Ψ(ˉx)Φ(ˉx)p(ba)F(d)dpsL1+pkd+μλp(ba)GddpsL1+pkd,(3.4) 而且,由0<c<s1pL1Md,可得 0<r<Φ(ˉx).

另一方面,对任意xX满足Φ(x)r, 我们有x(pr)1p,且由文献[2,附注 2.1],有xc.于是, supΦ(x)rΨ(x)r(ba)F(c)+μλGccppMppMp(ba)F(c)cp+μλpMpGccp, 此即 supΦ(x)rΨ(x)rpMp(ba)F(c)cp+μλpMpGccp.(3.5) 因为μ<δλ,g,我们有 μ<cpλpMp(ba)F(c)pMpGc,pMp(ba)F(c)cp+μλpMpGccp<1λμ<λ(ba)F(d)dpsL1pkdp(ba)Gd,1λ<p(ba)F(d)dpsL1+pkd+μλp(ba)GddpsL1+pkd, 也就是 pMp(ba)F(c)cp+μλpMpGccp<1λ<p(ba)F(d)dpsL1+pkd+μλp(ba)GddpsL1+pkd.(3.6)

因此,由(3.4),(3.5)和(3.6)式,引理1的条件(a1)得证且 λ(Φ(ˉx)Ψ(ˉx),rsupΦ(x)rΨ(x)). 由引理1可知泛函ΦλΨ存在三个临界点,证毕.

附注1    显然,当μ=0,ps1,a=0b=1,定理1也就是文献[2,定理1.1].

现在证明定理1的一个变形定理,定理2不要求条件(iv)中泛函g 的渐近性.取c1,c2,d>0满足 32dpsL1+pkdp(ba)F(d)<min{cp1pMp(ba)F(c1),cp22pMp(ba)F(c2)}λΛ:=(32dpsL1+pkdp(ba)F(d),min{cp1pMp(ba)F(c1),cp22pMp(ba)F(c2)}),δλ,g:=min{cp1λpMp(ba)F(c1)pMpGc1,cp2λpMp(ba)F(c2)2pMpGc2}.(3.7)

定理2    若存在三个正参量c1,c2,d满足 (2L)1pc1<d<(L2)1pc2,使得

(i)~f(ξ)0,ξ[0,c2];

(ii)~ MpF(c1)cp1<23F(d)dpsL1+pkd;

(iii)~ MpF(c2)cp2<13F(d)dpsL1+pkd.

则,对任意 λΛ:=(32dpsL1+pkdp(ba)F(d),min{cp1pMp(ba)F(c1),cp22pMp(ba)F(c2)})和任意 L1-卡拉泰奥多里泛函g:[a,b]×RR,存在(3.7)式中给定的 δλ,g>0使得对任意 μ(0,δλ,g),(Pλ,μ)问题 至少存在三个弱解xi,i=1,2,3满足 0<xi(t)<c2t[a,b],i=1,2,3.

    取结论中给定的λ,gμ 及定理1证明中给定的X,ΦΨ. 不难看出ΦΨ满足引理2中条件,且由最大值原则, (b3)成立,我们接下来要证明(b1)(b2). 为此,取(3.3)式中ˉx,r1=cp1pMP,r2=cp2pMP.于是,我们有 2r1<Φ(ˉu)<r22,且由 μ<δλ,g, supΦ(x)r1Ψ(x)r1pMp(ba)F(c1)cp1+μλpMpGc1cp1<1λ<23p(ba)F(d)dpsL1+pkd+2μ3λp(ba)GddpsL1+pkd23Ψ(ˉx)Φ(ˉx), 2supΦ(x)r2Ψ(x)r22pMp(ba)F(c2)cp2+μλ2pMpGc2cp2<1λ<23p(ba)F(d)dpsL1+pkd+2μ3λp(ba)GddpsL1+pkd23Ψ(ˉx)Φ(ˉx).

因此,(b1)(b2)成立,引理2保证泛函至少存在三个弱解,其范数小于 c2M.最后,由最大值原理和 xc2,我们的结论得以证明.

参考文献
[1] Bonanno G, Candito P, Non-differential functionals and applications to elliptic problems with discontinuous nonlinearities. J Differential Equations, 2008, 244: 3031–3059
[2] Bonanno G, Riccobono G. Multiple results for Sturm-Liouville boundary value problems. Appl Math Comput, 2009, 210: 294–297
[3] Bonanno G, Marano S A. On the structure of the critical set of non-differential functionals with a weak compactness condition. Appl Anal, 2010, 89: 1–10
[4] Tian Y, Ge W. Second-order Sturm-Liouville boundary value problem involving the one-dimensional pLaplacian. Rocky Mountain J Math, 2008, 38: 309–327
[5] Bonanno G, Chinn`ı A. Existence of three solutions for a perturbed two-point boundary value problem,Applied Mathematics Letter, 2010, 23: 807–811
[6] Bonanno G, D’Agu`? G. Multiplicity results for a perturbed elliptic Neumann problem. Abstract and Applied Analysis, 2010, 2010: 1–10
[7] D’Agu`ı G. Existence results for a mixed boundary value problem with Sturm-Liouville equation. Adv Pure Appl Math, 2011: 237–248
[8] D’Agu`? G. Multiplicity results for nonlinear mixed boundary value problem. Bound Value Probl, 2012,12: 2012–134
[9] D’Agu`? G. Infinitely many solutions for a double Sturm-Liouville problem. J Global Optimization, 2012,54: 619–625
[10] Bonanno G, Chinn`? A. Existence of three solutions for a perturbed two-point boundary value problem.Appl Math Lett, 2010, 23: 807–811
[11] Bonanno G, Motreanu G, Winkert P. Variational-hemivariational inequalities with small perturbations of nonhomogeneous Neumann boundary conditions. J Math Anal Appl, 2011, 381: 627–637
[12] D’Agu`? G, Sciammetta A. Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions. Nonlinear Anal, 2012, 75: 5612–5619
[13] Heidarkhani S, Tian Y. Multiplicity results for a class of gradient systems depending on two parameters. Nonlinear Anal, 2010, 73: 547–554
[14] Gao L M. Existence of multiple solutions for a second-order difference equation with a parameter. Appl Math Comput, 2010, 216: 1592–1598
[15] Ding L, Tang C L. Positive solutions for critical quasilinear elliptic equations with mixed DirichletNeumann boundary conditions, Acta Mathematica Scientia, 2013, 33(2): 443–470
一类含双参量边值问题的多重解
高黎明