数学物理学报  2015, Vol. 35 Issue (1): 15-28   PDF (376 KB)    
扩展功能    
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章    
王菲
王静
具有疾病和Holling II功能反应的捕食者-食饵扩散模型的分析
王菲, 王静    
东北师范大学 数学与统计学院
摘要    :该文主要研究一类带有疾病和Holling II功能反应的捕食者-食饵扩散模型的动力学行为.通过特征方程理论和Laypunov函数方法研究了非负平衡点的稳定性. 通过不等式技巧和最大值原理对给定的系统建立先验估计.此外,还获得了一些关于非常值正解存在性和不存在性的结果.
关键词捕食者-食饵模型     反应-扩散     疾病     HollingII功能反应    
Analysis of A Diffusive Predator-prey Model with Disease and Holling II Functional Response
WANG Fei, WANG Jing    
School of Mathematics and Statistics, Northeast Normal University, Changchun
Abstract    : This paper is concerned with the dynamical behaviors of a diffusive predator-prey system with disease and Holling II functional response. We discuss the stability of the nonnegative constant steady states by using the characteristic equation technique and Laypunov functional method. Priori estimates for the system is given by inequality technique and Maximum Principle. Furthermore, we derive some results for the non-existence and existence of non-constant positive solution.
Key words: Predator-prey model     Reaction-diffusion     Disease     Holling II functional response    
1 引言

生态学和传染病学是两个重要的研究领域.生态流行病学是理论生物学的 一个比较新的研究分支,通过处理生态学和传染病学的问题来处理这种情 况. 它可以被看做是生态学中的捕食者-食饵(竞争)模型和传染病学中 的SI,SIS或SIRS模型的结合. 了解捕食者与食饵的动力学关系是种群 动力学的主要目的之一. 传染病在捕食者-食饵系统中也有很重要的 影响[1, 2, 3, 4]. 捕食者-食饵的另一个重要关系是捕食者捕食食饵 的捕食率,也就是捕食者的功能性反应. 文献[5]研究了一个 具有传染率,疾病发作率等等的捕食者功能性反应的寄主-寄生虫-捕食者 模型动力学行为. 根据下面的假设生态流行病模型 $$ \left\{ \begin{array}{l} \frac{{\rm d}S}{{\rm d}t}=rS(1-\frac{S+I}{K})-\lambda IS-h(S)P,\\ [3mm] \frac{{\rm d}I}{{\rm d}t}=\lambda IS-\beta IP-\mu I,\\ [3mm] \frac{{\rm d}P}{{\rm d}t}=-\theta\beta IP-\delta P+\theta h(S)P. \end{array} \right. (1.1) $$ 系统(1.1)在初值条件 $S(0)>0; ~I(0)>0;~ P(0)>0$ 情况下进行分析. 系统的平衡点已经由文献[5]给出,也是系统稳定性的条件.

众所周知,扩散在决定捕食者-食饵模型的动力学行为中扮演重 要的角色[6, 7, 8]. 因为种群密度通常不是齐次分布,实际上捕食者和 食饵的自然发展策略是幸存. 扩散可以描述捕食者和食饵种群密度不同时 种群的移动也不相同这一个复杂情况. 文献[]研究了一个具有疾 病和扩散的Holling I捕食者-食饵模型. 文献[11]研究了一个具有疾 病和扩散的比率依赖捕食者-食饵模型.

考虑到在一个固定的有界区域$\Omega$内,对于任意给定的时刻 $t$种群的分布不均匀,这里$\Omega\subset {\Bbb R}^{N},(N\geq1)$.而且, 根据下面的假设,$h(u_1)$是系统(1.1)的Holling II功能性反应项. 对系统(1.1)进行无量纲化 $u_1=\frac{S}{K}$,$u_2=\frac{I}{K}$, $u_3=\frac{P}{K}$,$\tau=\lambda Kt$,$b=\frac{r}{\lambda K}$, $d=\frac{\beta}{\lambda}$,$e=\frac{\mu}{\lambda K}$, $g=\frac{\delta}{\lambda K}$,$l=\frac{K}{a}$, $m=\frac{\alpha}{\lambda a}.$ 我们把$\tau$仍记为$t$,得到 下面反应扩散类型的PDE系统 $$ \left\{\begin{array}{ll} u_{1t}-d_{1}\triangle u_{1}=bu_{1}[1-(u_{1}+u_{2})]-u_{1}u_{2}-\frac{mu_1u_3}{1+lu_1},\\ [3mm] u_{2t}-d_{2}\triangle u_{2}=u_{1}u_{2}-du_{2}u_{3}-eu_{2}, &x\in\Omega,t>0,\\ [3mm] u_{3t}-d_{3}\triangle u_{3}=\frac{mu_1u_3}{1+lu_1}-du_{2}u_{3}-gu_{3},\\ [3mm] \frac{\partial u_{1}}{\partial v}=\frac{\partial u_{2}}{\partial v}=\frac{\partial u_{3}}{\partial v}=0,&x\in\partial\Omega,t>0,\\ [2mm] u_{1}(x,0),u_{2}(x,0),u_{3}(x,0)\geq0, &x\in\Omega, \end{array} \right.(1.2)$$ 这里$\triangle$是Laplace算子,$\Omega$是${\Bbb R}^{N}$中边界光滑的区域, $\nu$是$\Omega$的单位外法向量. 正常数$d_{1},~d_{2},~d_{3}$ 是扩散系数,并且有初值$u_{i}(x,0)~(i=1,2,3)$是连续函数. 通 过文献[5]可知系统(1.2)存在五个平衡点,分别为 $E_0=(0,0,0),$ $E_1=(1,0,0),$ $E_2=(e,\frac{b(1-e)}{b+1},0),$ $E_3=(\frac{g}{m-gl},0,\frac{b(m-gl-g)}{(m-gl)^2}),$ $E_{*}=(u_1^{*},u_2^{*},u_3^{*}),$ 其中 $$u_2^{*}=\frac{1}{d}\bigg[\frac{mu_1^{*}}{1+lu_1^{*}}-g\bigg], ~~~~ u_3^{*}=\frac{u_1^{*}-e}{d}, $$ 其中$u_1^{*}$满足方程 $$ bdl{u_1^{*}}^2-[bd(l-1)+(b+1)gl-m(b+2)]u_1^{*}-[me+(b+1)g+bd]=0. (1.3) $$ 平衡点$E_0$,$E_1$对于所有的参数值总是存在的; $E_2$存在当且仅当$e<1$; $E_3$存在当且仅当$m>g(l+1)$; 系统的唯一正平衡点$E_{*}$存在当且仅当下列条件成立 $$g(l+1)<m<\frac{gl(b+1)+bd(l-1)}{b+2},~~~~ u_1^{*}>\max\bigg\{e,\frac{g}{m-gl}\bigg\},~~e<1.(1.4)$$

本文的主要目的之一是研究系统(1.2)的正稳态解 的存在性和不存在性,也就是下面椭圆系统的非常值正解的存在性与不存在性 $$ \left\{\begin{array}{ll} -d_{1}\triangle u_{1}=bu_{1}(1-u_{1})-(b+1)u_{1}u_{2}-\frac{mu_{1}u_{3}}{1+lu_1},\\ [3mm] -d_{2}\triangle u_{2}=u_{1}u_{2}-du_{2}u_{3}-eu_{2}, &x\in\Omega,\\ [3mm] -d_{3}\triangle u_{3}=\frac{mu_{1}u_{3}}{1+lu_1}-du_{2}u_{3}-gu_{3},\\ [3mm] \frac{\partial u_{1}}{\partial {\nu}}=\frac{\partial u_{2}}{\partial {\nu}}=\frac{\partial u_{3}}{\partial {\nu}}=0,&x\in\partial\Omega. \end{array} \right.(1.5) $$

文章剩余部分大体由以下几部分构成. 在第二部分, 通过线性化局部分析证明非负平衡点的局部渐进稳定性. 在第三部分, 对正稳态解的上下界进行先验估计. 在第四部分, 通过构造适当的Lyapunov函数证明了非负平衡点的全局渐进稳定性. 在第五、 六部分,我们研究了非常值正解的存在性和不存在性.

2 平衡点的稳定性

文献[5]中, 作者研究了系统(1.1)中非负平衡点的稳定性.本文研究系统(1.2)非负 平衡点的稳定性. 令$0=\mu_{1}<\mu_{2}<\mu_{3}<\cdots$是 $-\Delta$在$\Omega$中的特征根,并且具有齐次Neumann边界条件,令 $$ X=\bigg\{(u_1,u_2,u_3)\in[C^{1}(\bar\Omega)]^{3}|\frac{\partial u_1}{\partial\nu}=\frac{\partial u_2}{\partial\nu}=\frac{\partial u_3}{\partial\nu}=0,~x\in\partial\Omega\bigg\}, $$ 且$X=\bigoplus\limits_{i=1}^{\infty}X_{i}$,这里 $X_i$是$\mu_{i}$对应的特征空间.~

对系统(1.2)的右端求导可得 \begin{eqnarray*} &&G_{u}(\cdot)=: \left( \begin{array}{ccc} a_{11}&~~a_{12}~~&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{array} \right) \\ &=&\left( \begin{array}{ccc} b-2bu_{1}-(b+1)u_{2}-\frac{mu_{3}}{1+lu_{1}}+\frac{mu_{1}u_{3}}{(1+lu_{1})^{2}} &-(b+1)u_{1}& -\frac{mu_{1}}{1+lu_{1}}\\ [2mm] u_{2}&~u_{1}-du_{3}-e~&-du_{2}\\[2mm] \frac{mu_{3}}{1+lu_{1}}-\frac{mu_{1}u_{3}}{(1+lu_{1})^{2}}& -du_{3}& \frac{mu_{1}}{1+lu_{1}}-du_{2}-g\end{array} \right). \end{eqnarray*}

定理2.1    系统(1.2)的平衡点具有以下性质

(i)~ $E_0$是不稳定的;

(ii)~ 当$e>1,m<g(1+l)$成立时,$E_1$是渐进稳定的;

(iii)~ 当$m<\frac{g(1+le)}{e}$成立时,$E_2$是渐进稳定的;

(iv)~ 当$\frac{g(1+el)}{e}<m<\frac{gl(1+l)}{l-1}, \frac{l-1}{2l}<e<1,$ 或 $g(1+l)<m<\frac{gl(1+l)}{l-1}, e>1$成立时,$E_3$是渐进稳定的.

    下面仅对(ii)进行证明,其余的证明类似.

(ii)~ 令 $D={\rm diag}(d_{1},d_{2},d_{3}),L=D\Delta+G_{u}(E_1). $ 系统(1.2)在$E_1$的线性化系统为 $u_{t}=Lu. $ 对于任意的$ i\geqslant 1$,$X_i$在算子$L$下是不变的. 这意味着$\lambda$是$L$ 在$X_i$上的特征值当且仅当$\lambda$是矩阵 $-\mu_iD+f_u(u_1,u_2,u_3)$的特征值. $-\mu_iD+f_u(u_1,u_2,u_3)$的特征多项式为 $$\Psi_i(\lambda)=\lambda^3+B_{1i}\lambda^2+B_{2i}\lambda+B_{3i},$$ 这里 $$ B_{1i}=\mu_i(d_1+d_2+d_3)+A_1, $$ $$ B_{2i}=\mu_i^2(d_1d_2+d_1d_3+d_1d_3) -\mu_i[d_1(a_{22}+a_{33})+d_3(a_{11}+a_{22})+d_2(a_{11}+a_{33})]+A_2, $$ \begin{eqnarray*} B_{3i}&=&\mu_i^3d_1d_2d_3-\mu_i^2(d_1d_2a_{33}+d_2d_3a_{11} +d_1d_3a_{22})\\ &&+ \mu_i(d_1a_{22}a_{33}+d_{2}a_{11}a_{33}+d_3a_{11}a_{22})+A_{3}, \end{eqnarray*} $$ A_1=-(a_{11}+a_{22}+a_{33}), $$ $$ A_2=a_{11}a_{22}+a_{22}a_{33}+a_{11}a_{33}, $$ $$ A_3=-\det\{G_u(E_1)\}, $$ 其中 $$ \left\{ \begin{array}{l} a_{11}=-b<0,~~a_{12}=-(b+1)<0, ~~a_{13}=-\frac{m}{1+l}<0,\\[2mm] a_{21}=0,~~a_{22}=1-e<0,~~a_{23}=0,\\ [2mm] a_{31}=0,~~a_{32}=0,~~a_{33}=\frac{m}{1+l}-g<0,\end{array} \right. (2.1)$$ 所以有$A_{1}>0,A_{2}>0,A_{3}>0,B_{1i}>0,B_{3i}>0,$ $$B_{1i}B_{2i}-B_{3i}=M_1\mu_i^3+M_2\mu_i^2+M_3\mu_i+A_1A_2-A_3, $$ 其中 $$ M_1=(d_2+d_3)(d_1d_2+d_1d_3+d_2d_3)+d_1(d_1d_2+d_1d_3)>0, $$ \begin{eqnarray*} M_2&=&-[a_{11}(d_1d_2+d_2d_3)+a_{22}(d_1d_2+d_2d_3)+a_{33}(d_1d_3+d_2d_3)]\\ && -(d_1+d_2+d_3)[d_1(a_{22}+a_{33})+d_2(a_{11}+a_{33})+d_3(a_{11}+a_{22})]>0, \end{eqnarray*} \begin{eqnarray*} M_3&=&2(d_1+d_2+d_3)(a_{11}a_{22}+a_{11}a_{33}+a_{22}a_{33})\\ &&+(d_2+d_3)a_{11}^{2}+(d_1+d_3)a_{22}^{2}+(d_1+d_2)a_{33}^{2}>0, \end{eqnarray*} $$ A_1A_2-A_3>0. $$

于是,对于任意的$i\geq 0,B_{1i}B_{2i}-B_{3i}>0, $则由Routh-Hurwitz判据可知 $\Psi_i(\lambda)=0$的三个根$\lambda_{i,1},\lambda_{i,2}, \lambda_{i,3}$都具有负实部.

下面证明存在一个正常数$\delta$使得 $$ {\rm Re}\{\lambda_{i,1}\},{\rm Re}\{\lambda_{i,2}\},{\rm Re}\{\lambda_{i,3}\}\leqslant-\delta, \forall i\geq 1. (2.2) $$ 因此,令$\lambda=\mu_{i}\zeta$,则 $$\Psi_i(\lambda)=\mu_{i}^3\zeta^3+B_{1i}\mu_{i}^2\zeta^2+B_{2i}\mu_{i}\zeta+B_{3i}\triangleq\tilde{\Psi_i}(\zeta). $$ 因为当$i\rightarrow\infty$时,$\mu_{i}\rightarrow\infty,$故 $$ \lim_{i\rightarrow+\infty}\{\tilde{\Psi_i}(\zeta)/\mu_{i}^3\} =\zeta^3+(d_1+d_2+d_3)\zeta^2+(d_1d_2+d_2d_3+d_3d_1)\zeta+d_1d_2d_3\triangleq\bar{\Psi}(\zeta).$$ 应用Routh-Hurwitz判据可得$\bar{\Psi}(\zeta)=0$的三个根都具有负实部. 因此,存在一个正常数$\bar{\delta}$使得 $${\rm Re}\{\zeta_1\}, ~{\rm Re}\{\zeta_2\},~{\rm Re}\{\zeta_3\}\leqslant-\bar{\delta}. $$ 由连续性, 我们有$\exists i_{0}, $使得$\tilde{\Psi_i}(\zeta)=0$的三个根$\zeta_{i,1},\zeta_{i,2}, \zeta_{i,3}$满足 ${\rm Re}\{\zeta_{i,1}\},$ ${\rm Re}\{\zeta_{i,2}\},$ ${\rm Re}\{\zeta_{i,3}\}\leqslant-\frac{\bar{\delta}}{2},$ $\forall i\geqslant i_{0}. $ 从而有 ${\rm Re}\{\lambda_{i,1}\}, ~{\rm Re}\{\lambda_{i,2}\}, ~{\rm Re}\{\lambda_{i,3}\}\leqslant-\frac{\mu_{i}\bar{\delta}}{2},$$ ~\forall i\geqslant i_{0}. $ 令$-\tilde{\delta}= \max_{1\leqslant i\leqslant i_{0}}\{{\rm Re}\{\lambda_{i,1}\},$ $ ~{\rm Re}\{\lambda_{i,2}\},~{\rm Re}\{\lambda_{i,3}\}\},$ 则$\tilde{\delta}>0, $当$\delta=\min\{\tilde{\delta},~\frac{\bar{\delta}}{2}\}$ 时, (2.2)式成立.因此, $L$的包含特征值的谱位于$\{{\rm Re}\lambda\leqslant-\delta\},$ 则$E_1$的局部稳定性得证.

注 正平衡点$E_*$的稳定性需要进一步研究, 这里只给出关于$G_u(E_*)$的一些结果. 通过直接计算有 $$ a_{11}=\frac{u_1^{*}}{d(1+lu_1^{*})^2}[-bdl^2{u_1^{*}}^2+u_1^{*}(m-2bdl)-(bd+me)]. $$ 而且,$a_{11}<0$等价于 $$ -bdl^2{u_1^{*}}^2+u_1^{*}(m-2bdl)-(bd+me)<0. (2.3) $$ $$ \left\{ \begin{array}{l} a_{11}<0,~~a_{12}=-(b+1)u_1^{*}<0,~~a_{13}=-\frac{mu_1^{*}}{1+lu_1^{*}}<0,\\ [3mm] a_{21}=u_2^{*}>0,~~a_{22}=u_1^{*}-d\frac{u_1^{*}-e}{d}-e=0,~~a_{23}=-du_2^{*}<0,\\ [3mm] a_{31}=\frac{m(u_1^{*}-e)[1+(l-1)u_1^{*}]}{d(1+lu_1^{*})^2}>0,~~a_{32}=-du_3^{*}<0,\\ [3mm] a_{33}=\frac{mu_1^{*}}{1+lu_1^{*}}-d\frac{1}{d}[\frac{mu_1^{*}}{1+lu_1^{*}}-g]-g=0. \end{array} \right.(2.4) $$ 同时有 $\det G_{u}(E_*)=-a_{11}a_{23}a_{32}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}>0.$

3 正稳态解的有界性

这部分的主要目的是给出系统(1.5)正解的上下界的先验估计. 为了这个目的,我们首先引用下面已知的一些结果:

引理3.1    [12] 令$\omega\in C^{2}(\Omega)\cap C^{1}(\bar{\Omega})$是$\triangle \omega(x)+c(x)\omega(x)=0$的解,其中$c\in C(\bar{\Omega})$, $\omega$满足齐次Neumann边界条件,则存在一个正常数$C^{\ast}$, 其中$C^{\ast}$只依赖于$\alpha$,当$\|c\|_{\infty}\leq\alpha$时, 有$\max{\Omega}\bar{\omega}\leq C^{\ast}\min_{\bar{\Omega}}\omega$.

引理3.2    [13] 令$g(x,\omega)\in C(\Omega\times R^{1}),b_{j}(x)\in C(\bar\Omega),j=1,2,\cdots N,$

(I)~ 如果$\omega(x)\in C^{2}(\Omega)\cap C^{1}(\bar{\Omega})$在 $\Omega$上满足$\triangle \omega(x)+\sum\limits_{j=1}^N b_{j}(x)\omega_{x_{j}}+g(x,\omega(x)) \geq0$,在$\partial\Omega$上满足$\partial\omega/\partial\nu\leq0$ 且$\omega(x_{0})=\max_{\bar{\Omega}}\omega$,则$g(x_{0}, \omega(x_{0}))\geq0$.

(II)~ 如果$\omega(x)\in C^{2}(\Omega)\cap C^{1}(\bar{\Omega})$ 在$\Omega$上满足$\triangle \omega(x)+\sum\limits_{j=1}^N b_{j}(x) \omega_{x_{j}}+g(x,\omega(x))\leq0$,在$\partial\Omega$上满足 $\partial\omega/\partial\nu\geq0$且$\omega(x_{0})= \min_{\bar{\Omega}}\omega$,则$g(x_{0},\omega(x_{0}))\leq0$.

为了简便,定义常数$(d_{1},d_{2},d_{3})=d_*$,$(b,~d_*,~e,g, m_1)=\Lambda$.下面给出系统(1.5)正稳态解的有界性.

定理3.1    (上界) 如果$(u_1,u_2,u_3)$ 是系统(1.5)的正解, 则 $$ \max_{\bar{\Omega}}u_{1}(x)\leqslant1, \max_{\bar{\Omega}}u_{2}(x)\leqslant\frac{4ed_{1}+bd_{2}} {4ed_{2}(b+1)}, \max_{\bar{\Omega}}u_{3}(x)\leqslant\frac{4gd_{1}+bd_{3}}{4gd_{3}}. (3.1) $$

    首先直接对系统(1.5)用最大值原理有 $-d_{1}\triangle u_{1}=bu_{1}(1-u_{1})-(b+1)u_{1}u_{2} -\frac{mu_{1}u_{3}}{1+lu_1}\leqslant{bu_{1}(1-u_{1})}$ 使得$\max_{\bar{\Omega}}u_{1}(x)\leqslant1.$

令$\omega_{1}=d_{1}u_{1}+(b+1)d_{2}u_{2},$ 则 $$ \left\{\begin{array}{ll} -\triangle\omega_{1}=bu_{1}(1-u_{1})- \frac{mu_{1}u_{3}}{1+lu_1}-d(b+1)u_{2}u_{3}-e(b+1)u_{2}, ~~&x\in\Omega,\\[3mm] \frac{\partial \omega_{1}}{\partial{\nu}}=0, &x\in\partial\Omega.\end{array} \right.(3.2)$$ 如果$\omega_{1}(x_{0})=\max_{\Omega}\omega_{1}(x)$,由引理3.2可得 $$ e(b+1)u_{2}(x_{0})\leqslant{bu_{1}(1-u_{1})-\frac{mu_{1}u_{3}}{1+lu_1}-d(b+1)u_{2}u_{3}}\leqslant{\frac{b}{4}}, $$ 进而可得 $$ (b+1)d_{2}\max_{\bar{\Omega}}u_{2}(x)\leqslant{\max_{\Omega}\omega_{1}(x)}= d_{1}u_{1}(x_{0})+(b+1)d_{2}u_{2}(x_{0})\leqslant{d_{1}+{\frac{bd_{2}}{4e}}}=\frac{4ed_{1}+bd_{2}}{4e}, $$ 因此 $$ \max_{\bar{\Omega}}u_{2}(x)\leqslant\frac{4ed_{1}+bd_{2}}{4ed_{2}(b+1)}. $$ 令$\omega_{2}=d_{1}u_{1}+d_{3}u_{3},$ 我们有 $$ \left\{\begin{array}{ll} -\triangle\omega _{2}=bu_{1}(1-u_{1})-(b+1)u_{1}u_{2}-du_{2}u_{3}-gu_{3}, ~~&x\in\Omega,\\[2mm] \frac{\partial \omega_{2}}{\partial {\nu}}=0, &x\in\partial\Omega. \end{array} \right. (3.3) $$ 如果$\omega_{2}(x_{0})=\max_{\Omega}\omega_{2}(x)$, 由引理3.2可得 $$ gu_{3}(x_{0})\leqslant{bu_{1}(1-u_{1})-(b+1)u_{1}u_{2}-du_{2}u_{3}}\leqslant{\frac{b}{4}} , $$ 进而可得 $$ d_{3}\max_{\bar{\Omega}}u_{3}(x)\leqslant{\max_{\Omega}\omega_{2}(x)}= d_{1}u_{1}(x_{0})+d_{3}u_{3}(x_{0})\leqslant{d_{1}+{\frac{bd_{3}}{4g}}}=\frac{4gd_{1}+bd_{3}}{4g}, $$ 因此 $$ \max_{\bar{\Omega}}u_{3}(x)\leqslant\frac{4gd_{1}+bd_{3}}{4gd_{3}}~. $$ 证毕.

定理3.2     (下界) 设$\Lambda,\underline{d}_{1}, \underline{d}_{2},\underline{d}_{3}$是正数,如果 $$\frac{A}{b}<1-e,~(b+1)A^2-4bl[mB-b+A(b+1)]<0,~(3.4) $$ 其中 $A=\frac{4ed_{1}+bd_{2}}{4ed_{2}(b+1)} ,$ $B=\frac{4gd_{1}+bd_{3}}{4gd_{3}}, ~(d_{1},d_{2},d_{3})\in{{[\underline{d}_{1},{\infty})} \times{[\underline{d}_{2},{\infty})}\times{[\underline{d}_{3}, {\infty})}}.$ 那么,存在一个正常数$\underline{C}=\underline{C}(\Lambda,\underline{d}_{1},\underline{d}_{2},\underline{d}_{3})$,使得系统(1.5)的正解$u_1,u_2,u_3$满足$$\min_{\bar{\Omega}}u_{i}>\underline{C} ,~i=1,2,3.$$

     令 $$ c_{1}(x)=d_{1}^{-1} \bigg[b(1-u_{1})-(b+1)u_{2}-\frac{mu_{3}}{1+lu_1}\bigg], $$ $$ c_{2}(x)=d_{2}^{-1}[u_{1}-du_{3}-e] , $$ $$ c_{3}(x)=d_{3}^{-1}\bigg[\frac{mu_{1}}{1+lu_1}-du_{2}-g\bigg]. $$ 由(3.1)式可知,当$d_{1},d_{2},d_{3}>\overline{d}$时, 存在一个常数$\overline{C}(\overline{d}, \Lambda)$使得$\|c_{1}\|_{\infty},\|c_{2}\|_{\infty}, \|c_{3}\|_{\infty}\leqslant\overline{C}$. 由于$u_{1},u_{2},u_{3}$ 满足$\triangle{u_{i}}+c_{i}(x)u_{i}=0,\frac{\partial u_{i}}{\partial {\nu}}=0,(i=1,2,3)$. 根据引理3.1可知存在一个正常数$C_{*}=C_{*}(\Lambda,\overline{d})$ 使得$\max_{\bar{\Omega}}u_{i}\leqslant{C_{*}\min_{\bar{\Omega}}u_{i}}, ~i=1,2,3.$

应用反证法, 假设存在一个序列$(d_{1i},d_{2i},d_{3i}),$ 使得系统(1.5)对应的正解$(u_{1i},u_{2i},u_{3i})$满足$\max_{\bar{\Omega}}u_{1i}\rightarrow0$ 或者$\max_{\bar{\Omega}}u_{2i}\rightarrow0$ 或者$\max_{\bar{\Omega}}u_{3i}\rightarrow0,i\rightarrow{\infty}.$\\ 由引理3.2可得$u_{1i}\leqslant1$. 分部积分可得 $$ \left\{\begin{array}{l} \int_{\Omega}bu_{1i}(1-u_{1i})-(b+1)u_{1i}u_{2i}-\frac{mu_{1i}u_{3i}}{1+lu_{1i}}{\rm d}x=0,\\ [3mm] \int_{\Omega}u_{1i}u_{2i}-du_{2i}u_{3i}-eu_{2i}{\rm d}x=0,\\ [3mm] \int_{\Omega}\frac{mu_{1i}u_{3i}}{1+lu_{1i}}-du_{2i}u_{3i}-gu_{3i}=0, ~~~i=1,2,3.\end{array} \right.(3.5)$$ 由椭圆方程的标准正则定理可知存在${(u_{1i},u_{2i},u_{3i})}$ 的一个子序列,这里仍记为${(u_{1i},u_{2i},u_{3i})}$, 以及三个非负函数$u_{1},u_{2},u_{3}\in{C^{2}(\overline{\Omega})},$ 使得在$[{C^{2}(\overline{\Omega})}]^{3}$中, ${(u_{1i},u_{2i},u_{3i})\rightarrow{(u_{1},u_{2},u_{3})}}, i\rightarrow{\infty}$. 由(3.5)式可得$u_{1}\equiv0$ 或$u_{2}\equiv0$ 或$u_{3}\equiv0.$

进一步,令$(d_{1i},d_{2i},d_{3i})\rightarrow ({\overline{d}_{1}, \overline{d}_{2},\overline{d}_{3}}) \in{{[\underline{d}_{1},{\infty})}\times{[\underline{d}_{2}, {\infty})}\times{[\underline{d}_{3},{\infty})}}$, 其中$\overline{d}_{1},\overline{d}_{2},\overline{d}_{3}$满足(3.4)式. 由(3.5)式可得,当$ i\rightarrow{\infty}$时, $$ \left\{\begin{array}{l} \int_{\Omega}bu_{1}(1-u_{1})-(b+1)u_{1}u_{2}-\frac{mu_{1}u_{3}}{1+lu_1}{\rm d}x=0,\\ [3mm] \int_{\Omega}u_{1}u_{2}-du_{2}u_{3}-eu_{2}{\rm d}x=0,\\ [3mm] \int_{\Omega}\frac{mu_{1}u_{3}}{1+lu_1}-du_{2}u_{3}-gu_{3}=0.\end{array} \right.(3.6)$$

我们考虑以下三种情况.

第一种情况: $u_{1}\equiv0,~u_2>0,u_3>0. $

由于当$i\rightarrow{\infty}$时,$u_{1i}\rightarrow{u_{1}}$, 故$u_{1i}-du_{3i}-e<0$, $$0=d_{2i}\int_{\partial{\Omega}}\partial{\nu}u_{2i}{\rm d}S =-d_{2i}\int_{\Omega}\Delta{u_{2i}}{\rm d}x=\int_{\Omega}u_{2i}(u_{1i}-du_{3i}-e){\rm d}x<0{ , }i\gg1,$$ 产生矛盾.

第二种情况: $u_{2}\equiv0,u_{1}>0,u_3>0. $

$u_{1},u_{2},u_{3}$满足 $$-d_{1}\triangle u_{1}=u_{1}\bigg[b(1-u_{1})-(b+1)u_{2} -\frac{mu_{3}}{1+lu_1}\bigg],~\frac{\partial u_1}{\partial\nu}=0. $$ 令$u_{1}(x_{0})=\min_{\bar{\Omega}}u_{1}(x)$, 由引理3.2可得 $$b(1-u_{1}(x_{0}))-(b+1)u_{2}(x_{0}) -\frac{mu_{3}(x_{0})}{1+lu_1(x_0)}\leqslant0,$$ 于是$$bu_{1}(x_{0})\geqslant{b-(b+1)u_{2}(x_{0}) -\frac{mu_{3}(x_{0})}{1+lu_1(x_0)}}\geqslant b-(b+1)A -\frac{mB}{1+lu_1(x_0)},$$ 则$$\frac{blu_1(x_0)^2+(b+1)Au_1(x_0)+mB-[b-(b+1)A]} {1+lu_1(x_0)}\geqslant0.$$ 对$u_{2i}$的微分方程在$\Omega$上分部积分有 $$0=d_{2i}\int_{\partial{\Omega}}\partial{\nu}u_{2i}{\rm d}S =-d_{2i}\int_{\Omega}\Delta{u_{2i}}{\rm d}x=\int_{\Omega}u_{2i}(u_{1i} -du_{3i}-e){\rm d}x>0 ,~~i\gg1,$$ 产生矛盾.

三种情况: $u_{3}\equiv0,u_{1}>0,u_{2}>0.$

$u_{1},u_{2}$满足$$-d_{1}\triangle u_{1}=u_{1}[b(1-u_{1})-(b+1)u_{2}],{~~}\frac{\partial {u_{1}}}{\partial{\nu}}=0.$$ 令$u_{1}(x_{0})=\min_{\bar{\Omega}}u_{1}(x)$,通过引理3.2有 $$b(1-u_{1}(x_{0}))-(b+1)u_{2}(x_{0})\geqslant{b-\frac{4ed_{1}+bd_{2}}{4ed_{2}}},$$ 则有$$\min_{\bar{\Omega}}u_{1}(x)\geqslant{1-\frac{4ed_{1}+bd_{2}}{4bed_{2}}}.$$ 由于$\overline{d}_{1},\overline{d}_{2}$满足(3.4)式, 易得$u_{1i}-du_{3i}-e>0,i\gg1.$ 对$u_{2i}$的微分方程在$\Omega$上分部积分有 $$0=d_{2i}\int_{\partial{\Omega}}\partial{\nu}u_{2i}{\rm d}S =-d_{2i}\int_{\Omega}\Delta{u_{2i}}{\rm d}x=\int_{\Omega}u_{2i}(u_{1i} -du_{3i}-e){\rm d}x>0 ,~i\gg1, $$ 矛盾产生,证毕.

4 平衡点的全局稳定性

定理4.1     当$e>1,~m<g(1+l)$成立时, 系统(1.2)的常值解$(1,0,0)$是全局渐近稳定的.

     为了研究系统(1.2)的稳定性,考虑下面辅助系统 $$ \left\{ \begin{array}{l} \omega_{1t}-d_1\Delta\omega_1=b\omega_1(1-\omega_1)-(b+1)\omega_1\omega_2,\\ \omega_{2t}-d_2\Delta \omega_2=\omega_1\omega_2-e\omega_2,\\ [2mm] \frac{\partial \omega_1}{\partial\nu}=\frac{\partial\omega_2}{\partial\nu}=0,~~~~x\in\partial\Omega,\\ [2mm] \omega_1(x,0)\geqslant0,\omega_2(x,0)\geqslant0. \end{array} \right.(4.1) $$ 定义下面Lyapunov函数 $$ V(t)=\int_{\Omega}(\omega_1-1-\ln \omega_1){\rm d}x+(b+1)\int_{\Omega}\omega_2{\rm d}x, $$ 则我们有 \begin{eqnarray*} V'(t)&=&\int_{\Omega}\frac{\omega_{1}-1}{\omega_{1}}\omega_{1t}{\rm d}x+(b+1)\int_{\Omega}\omega_{2t}{\rm d}x\\ &=&\int_{\Omega} \bigg\{\frac{d_{1}(\omega_{1}-1)\triangle\omega_{1}}{\omega_{1}}+(\omega_{1}-1)[b(1-\omega_1)-(b+1)\omega_2] \bigg\}{\rm d}x\\ &&+(b+1)\int_{\Omega}(d_{2}\triangle \omega_{2}+\omega_1\omega_2-e\omega_2){\rm d}x\\ &\leq&-b\int_{\Omega}(\omega_1-1)^2{\rm d}x-(e-1)(b+1)\int_{\Omega}\omega_2{\rm d}x\\ &\leqslant &0. \end{eqnarray*} 由定理3.1有 $$ \lim_{t\rightarrow+\infty}\|\omega_{1}-1\|^{2}=0, \quad \lim_{t\rightarrow+\infty}\|\omega_{2}-0\|^{2}=0. $$ 因此,取$\varepsilon>0$充分小,$\exists T,$ 使得当$t>T$时有$\omega_{1}(x,t)\leq1+\varepsilon, ~\omega_{2}(x,t)\leq0+\varepsilon=\varepsilon$. 通过比较原理, (1.2)式的任意正解满足$u_{1}(x,t)\leq \omega_{1}(x,t)\leq1+\varepsilon, ~ u_{2}(x,t)\leq \omega_{2}(x,t)\leq0+\varepsilon.$ 因此 $$ \left\{ \begin{array}{ll} u_{3t}-d_{3}\triangle u_{3}= u_{3}\bigg(\frac{mu_1}{1+lu_1}-du_2-g\bigg)\leqslant u_3\bigg[\frac{m(1+\varepsilon)}{1+l(1+\varepsilon)}-g\bigg], ~~ &x\in\Omega,\\ [3mm] \frac{\partial u_{3}}{\partial\nu}=0 ,&x\in\partial\Omega,~t>T,\\ [3mm] u_{3}(x,T)>0 ,&x\in\Omega. \end{array} \right. $$ 令$\omega_3'(t)=\omega_3[\frac{m(1+\varepsilon)}{1+l(1+\varepsilon)}-g],$ 可得$\omega_3(t)=e^{c[\frac{m(1+\varepsilon)}{1+l(1+\varepsilon)}-g]t},$ 其中 $\frac{m(1+\varepsilon)}{1+l(1+\varepsilon)}-g<0$如果$m<g(1+l)$并且$\varepsilon$充分小. 故 $$\lim_{t\rightarrow+\infty} \omega_3(t)=0. $$ 因为$u_3(x,t)\leqslant \omega_3(t),$ 通过比较原理可得$$\lim_{t\rightarrow+\infty} u_3(x,\cdot)=0.$$ 因此 $$ \lim_{t\rightarrow+\infty} \|(u_1(x,t),u_2(x,t),u_3(x,t))-(1,0,0)\|=0. $$ 证毕.

下面定理的证明与定理4.1类似.

定理4.2     当$e>1,m<\frac{g(1+le)}{e}$时,(1.2)式的 平衡点$(e,\frac{b(1-e)}{b+1},0)$是全局渐近稳定的.

5 非常值正解的不存在性

这部分,研究系统(1.5)非常值正解的不存在性. 定理5.1     令$d_{2}^{\ast},d_{3}^{\ast}$是 固定的常数, 并且满足$d_{2}^{\ast}\mu_1>1-e,~d_{3}^{\ast}\mu_1>\frac{m}{1+l}-g,$ 则存在一个正常数$d_{1}=d_{1}(\Lambda,d_{2}^{*},d_{3}^{*}),$ 使得当$d_{i}\geq d_{i}^{\ast}(i=1,2,3)$时, 系统(1.5)没有非常值正解.

    $\forall u_i\in{{L}^{1}(\Omega)}$, 令$ u_i=\frac{1}{|\Omega|}\int_{\Omega}{u_i}{\rm d}x.$ 首先, 在(1.5)式两端同时乘以${u}_{i}-\bar{u}_{i},$ 然后积分有 $$ \sum_{i=1}^{3}\int_{\Omega}d_{i}|\nabla u_{i}|^{2}{\rm d}x = \sum_{i=1}^{3}\int_{\Omega}G_{i}(u_{i})(u_{i}-\bar{u}_{i}){\rm d}x = \sum_{i=1}^{3}\int_{\Omega} (G_{i}(u_{i})-G_{i}(\bar{u}_{i}))(u_{i}-\bar{u}_{i}){\rm d}x. (5.1)$$ 利用Young's不等式 $$|ab|\leqslant\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q},~~ \frac{1}{p}+\frac{1}{q}=1, $$ 有 \begin{eqnarray*} && \sum_{i=1}^{3}\int_{\Omega} (G_{i}(u_{i})-G_{i}(\bar{u}_{i}))(u_{i}-\bar{u}_{i}){\rm d}x\\ &=&\int_{\Omega}\bigg[b-bu_{1}-b\bar{u}_{1}-(b+1)u_{2} -\frac{mu_{3}}{(1+lu_1)(1+l\bar{u}_1)}\bigg](u_{1}-\bar{u}_{1})^{2}{\rm d}x \\ && +\int_{\Omega}(u_{1}-du_{3}-e)(u_{2}-\bar{u}_{2})^{2}{\rm d}x +\int_{\Omega} \bigg(\frac{mu_{1}}{1+lu_1}-du_{2}-g\bigg)(u_{3}-\bar{u}_{3})^{2}{\rm d}x \\ &&+\int_{\Omega}[-(b+1)\bar{u}_{1}+\bar{u}_{2}](u_{1}-\bar{u}_{1})(u_{2}-\bar{u}_{2}){\rm d}x\\ &&+\int_{\Omega} \bigg(-\frac{m\bar{u}_{1}}{1+l\bar{u}_1}+\frac{m\bar{u}_{3}} {(1+lu_1)(1+l\bar{u}_1)}\bigg)(u_{1}-\bar{u}_{1}) (u_{3}-\bar{u}_{3}){\rm d}x \\ && -\int_{\Omega}(d\bar{u}_{2}+d\bar{u}_{3})(u_{2}-\bar{u}_{2}) (u_{3}-\bar{u}_{3}){\rm d}x\\ &\leqslant & \int_{\Omega}b(u_{1}-\bar{u}_{1})^{2}{\rm d}x +\int_{\Omega}(u_{1}-e)(u_{2}-\bar{u}_{2})^{2}{\rm d}x+\int_{\Omega} \bigg(\frac{mu_{1}}{1+lu_1}-g\bigg)(u_{3}-\bar{u}_{3})^{2}{\rm d}x\\ &&+\int_{\Omega}[-(b+1)\bar{u}_{1}+\bar{u}_{2}] (u_{1}-\bar{u}_{1})(u_{2}-\bar{u}_{2}){\rm d}x \\ && +\int_{\Omega} \bigg(-\frac{m\bar{u}_{1}}{1+l\bar{u}_1} +\frac{m\bar{u}_{3}}{(1+lu_1)(1+l\bar{u}_1)}\bigg) (u_{1}-\bar{u}_{1})(u_{3}-\bar{u}_{3}){\rm d}x\\ &&-\int_{\Omega}(d\bar{u}_{2}+d\bar{u}_{3}) (u_{2}-\bar{u}_{2})(u_{3}-\bar{u}_{3}){\rm d}x\\ &\leqslant & \int_{\Omega}\bigg[(b+C_{1}+C_{2})(u_{2}-\bar{u}_{2})^{2}+(1-e+\varepsilon_{1})(u_{2}-\bar{u}_{2})^{2} +\bigg(\frac{m}{1+l}-g+\varepsilon_{2}\bigg) (u_{3}-\bar{u}_{3})^{2}\bigg]{\rm d}x, \end{eqnarray*} 其中$\varepsilon_{1},\varepsilon_{2}$是由Young's不等式引 起的任意小的正常数, $C_{1}=C_{1}(\Lambda,d_{2}^{*},d_{3}^{*},\varepsilon_{1}),$ $C_{2}=C_{2}(\Lambda,$ $d_{2}^{*},d_{3}^{*},\varepsilon_{2}).$

由Poincare不等式$\mu_{1}\int_{\Omega}(f-\bar{f})^{2}{\rm d}x\leq \int_{\Omega}|\nabla f|^{2}{\rm d}x$,我们有 \begin{eqnarray*} \mu_{1} \sum_{i=1}^{3}\int_{\Omega}d_{i}|\nabla u_{i}|^{2}{\rm d}x & \leqslant& \int_{\Omega}\bigg[(b+C_{1}+C_{2})(u_{2}-\bar{u}_{2})^{2}+(1-e+\varepsilon_{1})(u_{2}-\bar{u}_{2})^{2}\\ &&+\bigg(\frac{m}{1+l}-g+\varepsilon_{2}\bigg)(u_{3}-\bar{u}_{3})^{2}\bigg]{\rm d}x. \end{eqnarray*} 选取足够小的$ \varepsilon_{2},\varepsilon_{2}>0 $使得$ \mu_{1}d_{2}^{*}\geqslant1-e+\varepsilon_{1}, \mu_{1}d_{3}^{*}\geqslant \frac{m}{1+l}-g+\varepsilon_{2}, $积分上面不等式可得$u_{2}\equiv\bar{u}_{2}\equiv $ 常量, $u_{3}\equiv\bar{u}_{3}\equiv $ 常量, 如果$d_{1}>d_{1}^*\triangleq\mu_{1}^{-1}(b+C_{1}+C_{2}),$ 则$u_{1}\equiv\bar{u}_{1}\equiv $ 常量. 证毕.

6 非常值正解的存在性

d 本部分我们研究系统(1.5)在$E_*=u^*=(u_1^*,u_2^*,u_3^*~)$的线性化. 令$X$如第二部分定义,且定义 $$ \begin{array}{l} {\bf X}^{+}=\{{\bf u}\in{\bf X}|u_{i}>0~~\mbox{on}~~{\bar\Omega},i=1,2,3\},\\ {B}(C)=\{{\bf u}\in{\bf X}|C^{-1}<u_{i}<C~~\mbox{on}~~{\bar\Omega},i=1,2,3\}. \end{array} %(1.2) $$ 则系统(1.5)可以被记为 $$ \left\{\begin{array}{ll} -{D}\Delta{\bf u}={\bf G}({\bf u}),~~&x\in\Omega,\\ \partial_{\nu}{\bf u}=0,~~~~&x\in\partial\Omega, \end{array} \right.(6.1)$$ $\mathbf u$是系统(1.5)的一个正解当且仅当 在${\bf X}^{+}$中 $$ ~{\bf F}({\bf u})\triangleq {\bf u}-({\bf I}-\Delta)^{-1}\{{D}^{-1}{\bf G}({\bf u})+{\bf u}\}=0 ,$$ 其中$({\bf I}-\Delta)^{-1}$是$({\bf I}-\Delta)$的逆. 由于${\bf F}(\cdot)$是恒同算子的紧摄动,如果在$\partial {B}$上${\bf F}(u)\neq 0$,对任意的${B}={B}(c)$ Leray-Schauder度deg$({\bf F}(\cdot),0,{B})$有定义. 进一步,我们有 $$ {\bf D}_{u}{\bf F}({\bf u}^{*}) ={\bf I}-({\bf I}-\Delta)^{-1}\{{D}^{-1}{\bf G}_{u}({\bf u}^{*})+{\bf I}\} , $$ 如果${\bf D}_{u}{\bf F}({\bf u}^{*})$可逆,${\bf F}$在${\bf u}^{*}$的指数定义为 $\mbox{index}({\bf F}(\cdot),{\bf u}^{*})=(-1)^{\gamma}$,其中$\gamma$是${\bf D}_{u}{\bf F}({\bf u}^{*})$的负特征根的个数.

首先,对任意的整数$i>0$和整数$1\leq j\leq\dim E(\mu_{i}),{\bf X}_{ij}$在${\bf D}_{u}{\bf F}({\bf u}^{*})$下是不变的. 并且$\lambda$是${\bf D}_{u}{\bf F}({\bf u}^{*})$在${\bf X}_{ij}$上的特征值,当且仅当它是下面矩阵的特征值. $$ {\bf I}-\frac{1}{1+\mu_{i}}[{D}^{-1}{\bf G}_{u}({\bf u}^{*}) +{\bf I}]=\frac{1}{1+\mu_{i}}[\mu_{i}{\bf I}-{D}^{-1}{\bf G}_{u}({\bf u}^{*})]. $$ 因此,${\bf D}_{u}{\bf F}({\bf u}^{*})$是可逆的,当且仅当对所有的$i\geq0$, 矩阵${\bf I}-\frac{1}{1+\mu_{i}}[{D}^{-1}{\bf G}_{u}({\bf u}^{*})+{\bf I}]$是非奇异的. 定义 $$ H(\mu)=H({\bf u}^{*};\mu)\triangleq \det\{\mu{\bf I}-{D}^{-1}{\bf G}_{u}({\bf u}^{*})\} =\frac{1}{d_{1}d_{2}d_{3}}\det\{\mu {D}-{\bf G}_{u}({\bf u}^{*})\}. (6.2)$$ 如果$H(\mu_{i})\neq 0$,则对任意的$1\leq j\leq \dim E(\mu_{i})$,${\bf D}_{u}{\bf F}({\bf u}^{*})$在${\bf X}_{ij}$上的负特征根的个数为奇数等价于$H(\mu_{i})<0$. 因此我们可以得到下面的结果.

引理6.1     假设对$\forall i\geq0$,矩阵$\mu_{i}{\bf I}-{D}^{-1}{\bf G}_{u}({\bf u}^{*})$是非奇异的,则 $$ \mbox{index}({\bf F}(\cdot),{\bf u}^{*})=(-1)^\sigma, $$ 其中 $$ \sigma=\Sigma_{i\geq0,H(\mu_{i})<0}\dim E(\mu_{i}). $$

为了计算$({\bf F}(\cdot){\bf u}^{*})$的指数, 我们需要考虑$H(\mu_i)$的符号 $$ \det\{{\mu {D}-{\bf G}_{u}({\bf u}^{*})}\} =A_{3}(d_{2})\mu^{3}+A_{2}(d_{2})\mu^{2}+A_{1}(d_{2})\mu-\det{{{\bf G}_{u}({\bf u}^{*})}}\triangleq {\cal A}(d_{2};\mu), (6.3)$$ 其中 $$ A_{3}(d_{2})=d_{1}d_{2}d_{3}, $$ $$ A_{2}(d_{2})=-a_{11}d_{2}d_{3}, $$ $$ A_{1}(d_{2})=-a_{12}a_{21}d_{3}-a_{13}a_{31}d_{2}-a_{23}a_{32}d_{1}, $$ $$ \det\{G_{u}(u^{*})\}=-a_{11}a_{23}a_{32}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}, $$ 这里$a_{ij} $在第二部分中已给出.

首先我们考虑$\mathcal {A}$与$d_2$的关系. 令$\tilde{\mu}_{1}(d_{2}),\tilde{\mu}_{2}(d_{2}), \tilde{\mu}_{3}(d_{2})$ 是${\cal A}$ $(d_2;\mu)=0$的三个根, 且$Re{\tilde{\mu}_{1}(k)}\leq Re{\tilde{\mu}_{2}(k)}\leq Re{\tilde{\mu}_{3}(k)}. $ 则 $$ \tilde{\mu}_{1}(d_{2})\tilde{\mu}_{2}(d_{2})\tilde{\mu}_{3}(d_{2})=\det\{{\bf G}_{u}({\bf u}^{*})\}. $$ 由于$\det\{{\bf G}_{u}({\bf u}^{*})\}<0,~~A_{3}(d_{2})>0$. 因此$\tilde{\mu}_{1}(d_{2}),\tilde{\mu}_{2}(d_{2}),\tilde{\mu}_{3}(d_{2})$之一是正实数,并且另外两个的乘积是负数. 考虑下面的极限 $$ \lim_{d_2\rightarrow+\infty} \frac{A_{3}(d_{2})}{d_{2}}=d_{1}d_{3} ,~~ \lim_{d_2\rightarrow+\infty}\frac{A_{2}(d_{2})}{d_{2}}=-d_{3}a_{11} ,~~ \lim_{d_2\rightarrow+\infty}\frac{A_{1}(d_{2})}{d_{2}}=-a_{13}a_{31} , $$ $$ \lim_{d_2\rightarrow+\infty}\frac{{\cal A}(\mbox{d}_{2};\mu)}{d_{2}}=d_{1}d_{3}\mu^{3}-d_{3}a_{11}\mu^{2}-a_{13}a_{31}\mu =\mu(d_{1}d_{3}\mu^{2}-d_{3}a_{11}\mu-a_{13}a_{31}) , $$

如果参数$\Lambda,d_{1},d_{3}$满足 $${d_{3}}^{2}{a_{11}}^{2}+4d_{1}d_{3}a_{13}a_{31}>0, $$ 我们可以得到下面的引理.

引理6.2nbsp;    如果(1.4),(2.4)式成立,且$C^{-1}<\frac{ru_{1}^{*}(\alpha-1)}{bR}$,则存在一个正数$D_{2},$ 使得当$d_{2}\geq D_{2}$时, ${\cal A}(\mbox{d}_{2};\mu)=\mbox{0}$的三个根$\tilde{\mu}_{1}(d_{3}),\tilde{\mu}_{2}(d_{3}),\tilde{\mu}_{3}(d_{3})$都是实的且满足 $$ \begin{array}{l} \lim_{d_2\rightarrow+\infty}\tilde{\mu}_1(d_{2})=\frac{1}{2d_{1}d_{2}}[d_{3}a_{11}-\sqrt{{d_{3}}^{2}{a_{11}}^{2}+4d_{1}d_{3}a_{13}a_{31}}]<0,\\ [3mm] \lim_{d_2\rightarrow+\infty}\tilde{\mu}_2(d_{2})=\frac{1}{2d_{1}d_{2}}[d_{3}a_{11}+\sqrt{{d_{3}}^{2}{a_{11}}^{2}+4d_{1}d_{3}a_{13}a_{31}}]<0,\\ [3mm] \lim_{d_2\rightarrow+\infty}\tilde{\mu}_3(d_{2})=0=\tilde{\mu}. \end{array}(6.4) $$ 进一步,如果$-\infty<\tilde{\mu}_1(d_{2})<\tilde{\mu}_2(d_{2})<0<\tilde{\mu}_3(d_{2}),$ 则 $$ \begin{array}{l} \mu\in(-\infty,\tilde{\mu}_{\mbox{1}}(\mbox{d}_{2})) \cup(\tilde {\mu}_{2}(\mbox{d}_{2}),\tilde {\mu}_{3}(\mbox{d}_{2})), ~~{\cal A}(\mbox{d}_{2};\mu)<\mbox{0},\\ \mu\in(\tilde{\mu}_{\mbox{1}}(\mbox{d}_{2}), \tilde{\mu}_{2}(\mbox{d}_{2}))\cup(\tilde{\mu}_{3}(\mbox{d}_{2}), +\infty), ~~{\cal A}(\mbox{d}_{2};\mu)>\mbox{0}. \end{array}(6.5)$$

当$d_{2}$足够大,则存在$\Lambda,d_{i},i=1,3$使得系统$(1.5)$至 少有一个非常值正解.

定理6.1    假设参数$\Lambda,d_{1},d_{3}$固定, $\tilde{\mu}\in(\mu_{0},\mu_{1})$且$\sigma_{0}= \dim_{i\geqslant0,H(\mu_{i})<0}E(\mu_{i})$是奇数, 则存在一个正常数$D_{2}$,使得当$d_{2}\geq D_{2}$时, 系统(1.5)至少有一个非常值正解.

    通过引理6.2可知,存在一个正常数$D_{2}$使 得当$d_{2}\geq D_{2}$时,(6.5)式成立并且 $$ ~~~~0=\mu_{0}<\tilde{\mu}_{3}(d_{2})<\mu_{1}.(6.6) $$ 要证明$\forall d_{2}\geq D_{2},$系统(1.5)至少有一个非常值正解.

我们将基于拓扑度的同伦不变性,利用反证法来证明. 假设存在$d_{2}=\tilde{d_{2}}\geq D_{2}$使得结论不成立. 固定$d_{2}=\tilde{d_{2}},~{d_{2}}^{*}=\frac{2-e}{\mu_{1}},$

由定理$5.1,$ 存在一个正常数$D_{1}=D_{1}(\Lambda,d_{2}^{*},d_{3}^{*}),$ $\hat{d_{2}}\geqslant{d_{2}}^{*}, ~\hat{d_{3}}\geqslant\max\{{d_{3}}^{*},d_{3}\}, ~\hat{d_{1}}\geqslant\max\{D_{1},~d_{1}\}.$ 对于$t\in[0, 1],$ 定义${D}(t)={\rm diag}(d_{1}(t),~d_{2}(t),~d_{3}(t))$ 其中$d_{i}(t)=td_{i}+(1-t)\hat{d_{i}},$ $i=1,2,3. $ 考虑问题 $$ \left\{\begin{array}{ll} -{D}(t)\Delta{\bf u}={\bf G}({\bf u}), ~~&x\in\Omega,\\ \partial_{\nu}{\bf u}=0, &x\in\partial\Omega. \end{array}\right.(6.7)$$ 则${\bf u}$是系统(1.5)的一个非常值解当且仅当${\bf u}$是方程(6.7)当$t=1$时的一个解. 显然对任意的$0\leq t\leq 1$,${\bf u}^{*}$是方程(6.7)的唯一正常值解.

对任意的$0\leq t\leq 1$,${\bf u}$是方程(6.7) 的正解当且仅当 在${\bf X}^{+}$上 $${\bf F}(t;{\bf u})\triangleq{\bf u}-({\bf I}-\Delta)^{-1}\{{D}^{-1}(t){\bf G}({\bf u})+{\bf u}\}=0 . $$ 显然${\bf F}(1;{\bf u})={\bf F}({\bf u}),$ 由定理5.1可知${\bf F}(0;{\bf u})={\bf F}({\bf u})=0$在${\bf X}^{+}$中只有正解$\mathbf u^{*}$,直接计算可得 $$ {\bf D}_{u}{\bf F}(t;{\bf u}^{*})= {\bf I}-({\bf I}-\Delta)^{-1}\{{D}^{-1}(t){\bf G}_{u}({\bf u}^{*})+{\bf I}\}. $$ 特别地, $$ {\bf D}_{u}{\bf F}(0;{\bf u}^{*})= {\bf I}-({\bf I}-\Delta)^{-1}\{\tilde{{D}}^{-1}{\bf G}_{u}({\bf u}^{*})+{\bf I}\}, $$ $$ {\bf D}_{u}{\bf F}(1;{\bf u}^{*})= {\bf I}-({\bf I}-\Delta)^{-1}\{{D}^{-1}{\bf G}_{u}({\bf u}^{*})+{\bf I}\}={\bf D}_{u}F({\bf u}^{*}). $$ 其中$\hat{D}={\rm diag}(\hat{d_{1}},\hat{d_{2}},\hat{d_{3}})$. 由(6.2), (6.3)式可知 $$ H(\mu)=\frac{1}{d_{1}d_{2}d_{3}} {\cal A}(\mbox{d}_{2};\mu),(6.8) $$ 由(6.5), (6.6)式通过直接计算有 $$ \left\{\begin{array}{l} H(\mu_{0})=H(0)<0,\\ H(\mu_{i})>0,~~i\geq 1. \end{array}\right.(6.9)$$ 因此, 对任意的$i\geq 0$,$0$不是矩阵 $\mu_{i}{\bf I}-{D}^{-1}{\bf G}_{u}({\bf u}^{*})$的特征值, 且有 $$ \Sigma_{i\geq0,H(\mu_{i})<0}\dim E(\mu_{i})=\sum_{i=1}^n\dim E(\mu_{i})=\sigma_{n}~~~~\mbox{是奇数.} $$ 由引理6.1有 $$ \mbox{index}({\bf F}(1;\cdot),{\bf u}^{*})=(-1)^{\gamma}=(-1)^{\sigma_{n}}=-1. (6.10)$$

类似地我们可以证明 $$ \mbox{index}({\bf F}(0;\cdot),{\bf u}^{*})=(-1)^{0}=1. (6.11)$$ 通过定理3.1, 存在一个正常数$C$使得对所有的$0\leq t\leq 1$, (6.7)的正解满足$C^{-1}<u_{1},u_{2},u_{3}<C$. 因此,在$\partial{\cal B}\mbox{(c)}$上,对所有的$C^{-1}<u_{1},u_{2},u_{3}<C$,${\bf F}(t;{\bf u})\neq 0$. 由拓扑度的同伦不变性可知 $$ ~~~~\mbox{deg}({\bf F}(1;\cdot),0,{\cal B}\mbox{(c)})=\mbox{deg}({\bf F}(0;\cdot),0,{\cal B}\mbox{(c)}). (6.12)$$ 另一方面,通过假设,方程 ${\bf F}(1;{\bf u})=0$ 和 ${\bf F}(0;{\bf u})=0$在 ${\cal B}\mbox{(c)}$都只有一个正解,因此, 通过(6.10)和(6.11) 式 $$ \mbox{deg}({\bf F}(0;\cdot),0,{\cal B}\mbox{(c)})=\mbox{index}({\bf F}(0;\cdot),{\bf u}^{*})=(-1)^{0}=1, $$ $$ \mbox{deg}({\bf F}(1;\cdot),0,{\cal B}\mbox{(c)})=\mbox{index}({\bf F}(1;\cdot),{\bf u}^{*})=(-1)^{0}=-1. $$ 这与(6.12)式矛盾, 证毕.

参考文献
[1] Hadeler K P, Freedman H I. Predator-prey population with parasitic infection. J Math Bid, 1989, 27:609–631
[2] Venturino E. Epidemics in predator-prey models: disease in the predators. IMA J Math Appl Med Biol,2002, 19: 185–205
[3] Xiao Y N, Chen L S. Modeling and analysis of a predator-prey model with disease in the prey. Math Bios,2001, 171: 59–82
[4] Xiao Y N, Chen L S. A ratio-dependent predator-prey model with disease in the prey. Appl Math Comp,2002, 131: 397–414
[5] Bairagi N, Roy P K, Chattopadhyay J. Role of infection on the stability of a predator-prey system withseveral response functions-a comparative study. J Theoretical Biol, 2007, 248: 10–25
[6] Pang P Y H, Wang M X. Strategy and stationary pattern in a three-species predator-prey model. J DifferEqu, 2004, 200(2): 245–273
[7] Du Y H, Lou Y. Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation.Proc Roy Soc Edinburgh (Sec A), 2001, 131: 321–349
[8] Zhou J. On the Cauchy problem for a reaction-diffusion system with singular nonlinearity. Acta Math Sci,2013, 33: 1031–1049
[9] Li J J, Li J, Gao W J. Analysis of a prey-predator model for prey with epidemic disease. J Jilin University,2009, 47: 191–196
[10] Fu S M, Li H J. Stability of a diffusive predator-prey model with disease in the prey. J Northwest NormalUniversity, 2009, 45: 9–12
[11] Wang J, Qu X. Qualitative analysis for a ratio-dependent predator-prey model with disease and diffusion.Appl Math and Comp, 2011, 217: 9933–9947
[12] Lin C S, Ni W M, Takai I. Large amplitude stationary solutions to a chemotaxis systems. J Differ Equ,1988,72: 1–27
[13] Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion. J Differ Equ, 1996, 131: 79–131
[14] Wang M X. Nonlinear Partial Differential Equations of Parabolic Type (Chinese). Beijing: Science Press,1993