Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (3): 514-526.
Previous Articles Next Articles
Zhang Shengui
Received:
2016-09-14
Revised:
2017-10-16
Online:
2018-06-26
Published:
2018-06-26
Supported by:
CLC Number:
Zhang Shengui. Infinitely Many Solutions for a Bi-Nonlocal Problem Involving p(x)-Laplacian-Like Operator[J].Acta mathematica scientia,Series A, 2018, 38(3): 514-526.
[1] Ruzicka M. Electrorheologial Fluids:Modeling and Mathematial Throry. Berlin:Springer-Verlag, 2000 [2] Zhikov V. Averaging of functionals of the calculus of variations and elasticity theory. Math USSR Izv, 1987, 9:33-66 [3] Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 66:1383-1406 [4] Avci M, Cekic B, Mashiyev R A. Existence and multiplicity of the solutions of the p(x)-Kirchhoff type equation via genus theory. Mathematical Methods in the Applied Sciences, 2011, 34(14):1751-1759 [5] Allaoui M, Amrouss E, Rachid A. Existence results for a class of nonlocal problems involving p(x)-Laplacian. Mathematical Methods in the Applied Sciences, 2016, 39(4):824-832 [6] Cammaroto F, Vilasi L. Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator. Nonlinear Anal TMA, 2011, 74(5):1841-1852 [7] Chung N T. Multiplicity results for a class of p(x)-Kirchhoff type equations with combined nonlinearities. Electron J Qual Theory Differential Equations, 2012, 42:1-13 [8] Fan X L, Zhao D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J Math Anal Appl, 2001, 263:424-446 [9] Fan X L, Zhang Q H. Existence of solutions of p(x)-Laplacian Dirichlet problems. Nonlinear Anal TMA, 2003, 52:1843-1852 [10] Fan X L. On nonlocal p(x)-Laplacian Dirichlet problems. Nonlinear Anal TMA, 2010, 72:3314-3323 [11] Li L, Tang C L. Existence and multiplicity of solutions for a class of p(x)-biharmonic equations. Acta Mathematica Scientia, 2013, 33B(1):155-170 [12] Massar M, Talbi M, Tsouli N. Multiple solutions for nonlocal system of (p(x), q(x))-Kirchhoff type. Applied Mathematics and Computation, 2014, 242:216-226 [13] Rǎdulescu V D. Nonlinear elliptic equations with variable exponent:old and new. Nonlinear Anal TMA, 2015, 121:336-369 [14] Lapa E C, Rivera V P, Broncano J Q. No-flux boundary problems involving p(x)-Laplacian-like operators. Electronic J Differential Equations, 2015, 219:1-10 [15] Ge B. On superlinear p(x)-Laplacian-like problem without Ambrosetti and Rabinowitz condition. Bull Korean Math Soc, 2014, 51:409-421 [16] Avci M. Ni-Serrin type equations arising from capillarity phenomena with non-standard growth. Boundary Value Problems, 2013, 55(1):1-13 [17] Rodrigues M M. Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators. Mediterranean J Mathematics, 2012, 9(1):211-223 [18] Zhou Q M. On the superlinear problems involving p(x)-Laplacian-like operators without AR-condition. Nonlinear Anal RWA, 2015, 21:161-169 [19] Ding Y H, Luan S X. Multiple solutions for a class of nonlinear Schrödinger equations. J Differential Equations, 2004, 207:423-457 [20] Zhou H S. An application of a mountain pass theorem. Acta Mathematica Sinica English Series, 2002, 18(1):27-36 [21] Tang C L, Wu X P. Periodic solutions for a class of new superquadratic second order Hamiltonian systems. Appl Math Lett, 2014, 34:65-71 [22] Bartsch T. Infinitely many solutions of a symmetric Dirichlet problem. Nonlinear Anal TMA, 1993, 20:1205-1216 [23] Kajikiya R. A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J Funct Analysis, 2005, 225:352-370 |
[1] | Xie Chaodong, Chen Zhihui. On the Existence of Positive Solutions for Generalized Quasilinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2018, 38(4): 687-696. |
[2] | Xing Chao, Ren Mengzhang, Luo Hong. The Existence of Global Weak Solutions to Thermohaline Circulation Equations [J]. Acta mathematica scientia,Series A, 2018, 38(2): 284-290. |
[3] | Chen Lizhen, Li Anran, Li Gang. Existence of Infinitely Many Solutions to a Class of Klein-Gordon-Maxwell System with Superlinear and Sublinear Terms [J]. Acta mathematica scientia,Series A, 2017, 37(4): 663-670. |
[4] | Chen Huiwen, Li Jianli, Shen Jianhua. New Results for Neumann Boundary Value Problem with Impulses via Variational Methods [J]. Acta mathematica scientia,Series A, 2017, 37(1): 54-61. |
[5] | Du Guangwei, Niu Pengcheng. Higher Integrability for Very Weak Solutions of Obstacle Problems to Nonlinear Subelliptic Equations [J]. Acta mathematica scientia,Series A, 2017, 37(1): 122-145. |
[6] | Chen Shaowei, Xiao Liqin. Existence of Nontrivial Solution of a Periodic Thomas-Fermi-Dirac-von Weizsäcker Equation with a Large Parameter [J]. Acta mathematica scientia,Series A, 2016, 36(5): 965-977. |
[7] | Wei Gongming, Li qing. Mountain Pass Solutions for Fractional Coupled Nonlinear Schrödinger Systems [J]. Acta mathematica scientia,Series A, 2016, 36(1): 65-79. |
[8] | Song Hongxue, Yan Qinglun. Multiple Solutions for Quasilinear Elliptic Exterior Problem with Neumann Boundary Conditions [J]. Acta mathematica scientia,Series A, 2015, 35(5): 845-854. |
[9] | Ye Yiwei, Tang Chunlei. Existence and Multiplicity Results for Schrödinger-Poisson System with Superlinear or Sublinear Terms [J]. Acta mathematica scientia,Series A, 2015, 35(4): 668-682. |
[10] | GAO Li-Meng. Multiplicity Results for A Boundary Value Problem with Double Parameter [J]. Acta mathematica scientia,Series A, 2015, 35(1): 50-55. |
[11] | XU Jia, DAI Guo-Wei. Infinitely Many Critical Points of Perturbed Symmetric Functionals Involving p-Laplacian [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1532-1541. |
[12] | WU Yuan-Ze, HUANG Yi-Sheng, LIU Zeng. SIGN-CHANGING SOLUTIONS FOR SCHRÖDINGER EQUATIONS WITH VANISHING AND SIGN-CHANGING POTENTIALS [J]. Acta mathematica scientia,Series A, 2014, 34(3): 691-702. |
[13] | LIANG Zhan-Ping, SU Jia-Bao. Solutions to Inhomogeneous Quasilinear Elliptic Problems with Concave-Convex Type Nonlinearities [J]. Acta mathematica scientia,Series A, 2014, 34(2): 217-226. |
[14] | ZHANG Xing-Yong. Periodic Solutions for the First Order Hamiltonian System with Linear Part [J]. Acta mathematica scientia,Series A, 2013, 33(5): 894-905. |
[15] | LI Zhou-Xin, SHEN Yao-Tian. Existence of Solutions for Elliptic Equations Involving Hardy Potential under Natural Growth Condition [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1470-1478. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|