Acta mathematica scientia,Series A ›› 2010, Vol. 30 ›› Issue (3): 694-702.
• Articles • Previous Articles Next Articles
ZHANG Yu, SUN Ji-Tao
Received:
2008-09-09
Revised:
2009-10-12
Online:
2010-05-25
Published:
2010-05-25
Supported by:
国家自然科学基金(60874027, 60904027, 10926114)和同济大学青年优秀人才培养行动计划(2007KJ007)资助
CLC Number:
ZHANG Yu, SUN Ji-Tao. Stability of |Impulsive Coupled |Delay Differential and Continuous Time Difference Systems[J].Acta mathematica scientia,Series A, 2010, 30(3): 694-702.
[1] Yang T. Impulsive Systems and Control: Theory and Applications. Huntington, New York: Nova Science Publishers Inc, 2001 [2] Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore: World Scientific, 1989 [3] Jankowski T. Existence of solutions for second order impulsive differential equations with deviating arguments. Nonlinear Analysis: Theory, [4] Benchohra M, Henderson J, Ntouyas S K. Impulsive neutral functional differential equations in Banach spaces. Appl Anal, 2002, 80(3): 353--365 [5] Graef J R, Shen J H, Stavroulakis I P. Oscillation of impulsive neutral delay differential equations. J Math Anal Appl, 2002, 268(1): 310--333 [6] Guan Z H, Chen G R, Yu X H, Qin Y. Robust decentralized stabilization for a class of large-scale time-delay uncertain impulsive dynamical systems. Automatica, 2002, 38: 2075--2084 [7] Khadra A, Liu X Z, Shen X M. Application of impulsive synchronization to communication security. IEEE Trans Circuits and Systems I, 2003, 50(3): 341--351 [8] Liu B, Teo K L, Liu X Z. Robust exponential stabilization for large-scale uncertain impulsive systems with coupling time-delays. Nonlinear Analysis: Theory, Methods \& Applications, 2008, 68(5): 1169--1183 [9] Sun J T, Zhang Y P, Wu Q D. Less conservative conditions for asymptotic stability of impulsive control systems. IEEE Trans Automatic Control, 2003, 48(5): 829--831 [10] Zhang Y, Sun J T. Eventual stability of impulsive differential systems. Acta Mathematica Scientia, 2007, 27(2): 373--380 [11] Zhang Y, Sun J T. Strict stability of impulsive functional differential equations. Journal of Mathematical Analysis and Applications, 2005, 301: 237--248 [12] Domoshnitsky A, Drakhlin M, Litsyn E. Nonoscillation and positivity of solutions to first order state-dependent differential equations with impulses in variable moments. Journal of Differential Equations, 2006, 228(1): 39--48 [13] Ouahab A. Existence and uniqueness results for impulsive functional differential equations with scalar multiple delay and infinite delay. Nonlinear Analysis: Theory, Methods \& Applications, 2007, 67(4): 1027--1041 [14] Malisoff M, Rifford L, Sontag E. Global asymptotic controllability implies input-to-state stabilization. SIAM J Control Optim, 2004, 42(6): 2221--2238 [15] Mao X R. Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations. SIAM J Math Anal, 1997, 28(2): 389--401 [16] Michiels W, Sepulchre, Roose R D. Stability of perturbed delay differential equations and stabilization of nonlinear cascade systems. SIAM J Control Optim, 2002, 40(3): 661--680 [17] Hagiwara T, Araki M. Absolute stability of sampled-data systems with a sector nonlinearity. Systems & Control Letters, 1996, 27: 293--304 [18] Madill D R, Wang D. Modeling and L2-stability of a shape memory alloy position control system. IEEE Transactions on Control Systems Technology, 1998, 6(4): 473--481 [19] Niculescu S I. Delay Effects on Stability, a Robust Control Approach. Lecture Notes in Control and Information Sciences. New York: Springer-Verlag, 2001 [20] Pepe P. On the asymptotic stability of coupled delay differential and continuous time difference equations. Automatica, 2005, 41(1): 107--112 [21] Pepe P, Verriest E I. On the stability of coupled delay differential and continuous time difference equations. IEEE Trans Automatic Control, 2003, 48(8): 1422--1427 [22] Nesic D, Teel A R. Input output stability properties of networked control systems. IEEE Trans Auto Contr, 2004, 49: 1650--1667 [23] Hale J K, Amores P M. Stability in neutral equations. J Nonlinear Anal Theory, Methods, Applicat, 1977, 1(1): 161--172 [24] Jaehak C, Powers E J, Grady W M, Bhatt S C. Power disturbance classifier using a rule-based method and wavelet packet-based hidden Markov model. IEEE Trans Power Delivery, 2002, 17(1): 233--241 [25] Miller D B, Lux A E, Grzybowski S, Barnes P R. The effects of steep-front, short-duration impulses on power distribution components. IEEE Trans Power Delivery, 1990, 5(2): 708--715 |
[1] | Wang Huiwen, Zeng Hongjuan, Li Fang. An Existence Result for Impulsive Boundary Value Problem for Fractional Differential Equations with Multiple Base Points [J]. Acta mathematica scientia,Series A, 2018, 38(4): 697-715. |
[2] | Xu Jia, Wang Yanxia, Dai Guowei. Fast Heteroclinic Solutions for a Difference Equation Related to Fisher-Kolmogorov's Equation [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1145-1156. |
[3] | Wang Yue, Gao Lingyun. On the Behavior of Systems of Complex Difference Equations with Admissible Solutions [J]. Acta mathematica scientia,Series A, 2016, 36(5): 901-910. |
[4] | Chen Minfeng, Gao Zongsheng. Entire Solutions of a Certain Type of Nonlinear Differential-Difference Equation [J]. Acta mathematica scientia,Series A, 2016, 36(2): 297-306. |
[5] | Diem Dang Huan, Gao Hongjun. Well-Posedness for Fractional Neutral Impulsive Stochastic Integro-Differential Equations [J]. Acta mathematica scientia,Series A, 2015, 35(2): 405-421. |
[6] | ZHANG Ke, WANG Jun. Complex Oscillation of Meromorphic Solutions of Some Difference Equations [J]. Acta mathematica scientia,Series A, 2015, 35(1): 218-224. |
[7] | WANG Yue, ZHANG Qiang-Cai. Solutions of Some Types of Systems of Complex Higher-Order q-Shift Difference Equations [J]. Acta mathematica scientia,Series A, 2014, 34(4): 761-768. |
[8] | TU Jin, ZHENG Xiu-Min. Some Properties of q-Shift Difference Polynomials and Meromrophic Solutions of Generalized q-Shift Difference Equations [J]. Acta mathematica scientia,Series A, 2013, 33(5): 951-959. |
[9] | PAN Te-Tie, SHI Bao, YANG Shu-Jie, ZHANG Qiang. Stability Analysis of Stochastic BAM-type Cohen-Grossberg Neural Networks with Delays and Impulses [J]. Acta mathematica scientia,Series A, 2013, 33(5): 937-950. |
[10] | WENG Ai-Zhi, SUN Ji-Tao. Generalization of Lyapunov Inequality for |Dirichlet BVPs with Impulses and its Applications [J]. Acta mathematica scientia,Series A, 2011, 31(1): 82-91. |
[11] | NI Ming-Kang, LIN Wu-Zhong. The Asymptotic Solutions of Delay Singularly Perturbed Differential Difference Equations [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1413-1423. |
[12] | WEI Geng-Ping, SHEN Jian-Hua. Asymptotic Behavior for a Class of Nonlinear Impulsive Neutral Delay Differential Equations [J]. Acta mathematica scientia,Series A, 2010, 30(3): 753-763. |
[13] | WU Shu-Jin, SONG Qiong, GUO Xiao-Lin. p-Moment Boundedness of Functional Differential Equations with Random Impulses [J]. Acta mathematica scientia,Series A, 2010, 30(1): 126-141. |
[14] | Yang Xitao. Stability and Boundedness of Solutions and Existence of Almost Periodic Solution for Difference Equations [J]. Acta mathematica scientia,Series A, 2008, 28(5): 870-878. |
[15] |
Zhang Chaolong; Yang Fengjian; Yang Jianfu.
Oscillation of Higher Order Nonlinear Functional Differential Equation with Impulses [J]. Acta mathematica scientia,Series A, 2008, 28(1): 188-200. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|