Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (3): 946-959.
Previous Articles Next Articles
Peng Wu1,Shuai Zhang1,Cheng Fang2,*()
Received:
2024-10-25
Revised:
2025-03-01
Online:
2025-06-26
Published:
2025-06-20
Supported by:
CLC Number:
Peng Wu, Shuai Zhang, Cheng Fang. Dynamics of an Age-Space Structure Pine Wilt Disease Model with Nonlocal Diffusion and Spatial Heterogeneity[J].Acta mathematica scientia,Series A, 2025, 45(3): 946-959.
[1] | Yoshimura A, Kawasaki K, et al. Modeling the spread of pine wilt disease caused by nematodes with pine sawyers as vector. Ecology, 1999, 80(5): 1691-1702 |
[2] | Takasu F. Individual-based modeling of the spread of pine wilt disease: vector beetle dispersal and the Allee effect. Popul Ecol, 2009, 51: 399-409 |
[3] | Lee K S, Kim D. Global dynamics of a pine wilt disease transmission model with nonlinear incidence rates. Appl Math Model, 2013, 37(6): 4561-4569 |
[4] | Lee K S, Lashari A A. Stability analysis and optimal control of pine wilt disease with horizontal transmission in vector population. Appl Math Comput, 2014, 226: 793-804 |
[5] | AI Basir F, Ray S. Modeling the transmission dynamics of plant viral disease using two routes of infection, nonlinear terms and incubation delay. Int J Biomath, 2022, 15(6): 2250032 |
[6] | 高淑京, 葛扬球, 陈迪. 一类具有阶段结构的虫媒传播植物病模型的全局分析. 应用数学学报, 2023, 46(3): 457-477 |
Gao S J, Ge Y Q, Chen D. Global dynamics of a vector-borne plant disease model with a stage-structure. Acta Math Appl Sin, 2023, 46(3): 457-477 | |
[7] | El-Mesady A, Ahmed N, Elsonbaty A, Adel W. Transmission dynamics and control measures of reaction-diffusion pine wilt disease model. EPJ Plus, 2023, 138(12): Article 1078 |
[8] | Hou Y, Ding Y. Dynamic analysis of pine wilt disease model with memory diffusion and nonlocal effect. Chaos Solitons Fractals, 2024, 179: 114480 |
[9] | Hanche-Olsen H, Holden H. The kolmogorov-riesz compactness theorem. Expo Math, 2010, 28(4): 385-394 |
[10] | Yang J, Gong M, Sun G Q. Asymptotical profiles of an age-structured foot-and-mouth disease with nonlocal diffusion on a spatially heterogeneity environment. J Differential Equations, 2023, 377: 71-112 |
[11] | Inaba H. Age-Structured Population Dynamics in Demography and Epidemiology. Singapore: Springer, 2017 |
[12] | 韦爱举, 张新建, 王俊义, 李科赞. 一类埃博拉传染病模型的动力学分析. 数学物理学报, 2017, 37A(3): 577-592 |
Wei A J, Zhang X J, Wang J Y, Li K Z. Dynamics analysis of an ebola epidemic Model. Acta Math Sci, 2017, 37A(3): 577-592 | |
[13] | 吴鹏, 方诚. 一类具有多时滞非局部扩散 HIV 潜伏感染模型的时空动力学分析. 高校应用数学学报, 2024, 39(3): 331-346 |
Wu P, Fang C. Spatio-temporal dynamics of HIV latent infection model with nonlocal dispersal and multiple intracellular delays. Appl Math JCU, 2024, 39(3): 331-346 | |
[14] | Fotso Y F, Touzeau S, Tsanou B, Grognard F, Bowong S. Mathematical modelling of a pest in an age-structured crop model: The coffee berry borer case. Appl Math Model, 2022, 110: 193-206 |
[1] | Wu Peng, Fang Cheng. Dynamical Analysis of an Age-Structured HIV Latent Model with Nonlocal Dispersal and Spatial Heterogeneity [J]. Acta mathematica scientia,Series A, 2025, 45(1): 279-294. |
[2] | Wu Peng, Fang Cheng. Dynamical Analysis and Numerical Simulation of a Syphilis Epidemic Model with Heterogeneous Spatial Diffusion [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1352-1367. |
[3] | Wu Peng, He Zerong. Spatio-temporal Dynamics of HIV Infection Model with Periodic Antiviral Therapy and Nonlocal Infection [J]. Acta mathematica scientia,Series A, 2024, 44(1): 209-226. |
[4] | Zhong Yi, Wang Yi, Jiang Tianhe. Dynamic Analysis and Optimal Control of an SIAQR Transmission Model with Asymptomatic Infection and Isolation [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1914-1928. |
[5] | Wu Peng,Wang Xiunan,He Zerong. Dynamical Analysis of an Age-Space Structured HIV/AIDS Model with Homogeneous Dirichlet Boundary Condition [J]. Acta mathematica scientia,Series A, 2023, 43(3): 970-984. |
[6] | Zhenxiang Hu,Linfei Nie. Analysis of a Reaction-Diffusion Epidemic Model with Horizontal Transmission and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1849-1860. |
[7] | Kai Wang,Hongyong Zhao. Traveling Wave of a Reaction-Diffusion Dengue Epidemic Model with Time Delays [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1209-1226. |
[8] | Tailei Zhang,Junli Liu,Mengjie Han. Dynamics of an Anthrax Epidemiological Model with Time Delay and Seasonality [J]. Acta mathematica scientia,Series A, 2022, 42(3): 851-866. |
[9] | Yu Yang. Global Attractivity of a Nonlocal Delayed and Diffusive SVIR Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1864-1870. |
[10] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[11] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
[12] | Xiaojie Jing, Aimin Zhao, Guirong Liu. Global Stability of a Measles Epidemic Model with Partial Immunity and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2019, 39(4): 909-917. |
[13] | Zhang Liping, Zhao Yu, Yuan Sanling. Threshold Dynamical Behaviors of a Stochastic SIS Epidemic Model with Nonlinear Incidence Rate [J]. Acta mathematica scientia,Series A, 2018, 38(1): 197-208. |
[14] | Wei Aiju, Zhang Xinjian, Wang Junyi, Li Kezan. Dynamics Analysis of an Ebola Epidemic Model [J]. Acta mathematica scientia,Series A, 2017, 37(3): 577-592. |
[15] | LOU Jie, MA Zhi-En. Stability of Some Epidemic Models |with Passive Immunity [J]. Acta mathematica scientia,Series A, 2003, 23(3): 357-368. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 38
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|