Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (4): 1133-1148.
Previous Articles Next Articles
Received:
2022-05-10
Revised:
2023-04-24
Online:
2023-08-26
Published:
2023-07-03
CLC Number:
Zhang Qinghua. On Weighted Estimates for the Nnonstationary 3D Navier-Stokes Flow in an Exterior Domain[J].Acta mathematica scientia,Series A, 2023, 43(4): 1133-1148.
[1] |
Arrieta M, Carvalho A N. Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations. Trans Amer Math Soc, 2000, 352: 285-310
doi: 10.1090/tran/2000-352-01 |
[2] |
Bae H O, Jin B J. Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains. J Func Anal, 2006, 240: 508-529
doi: 10.1016/j.jfa.2006.04.029 |
[3] |
Bae H O, Jin B J. Temporal and spatial decay rates of Navier-Stokes equations in exterior domains. Bull Korean Math Soc, 2007, 44(3): 547-567
doi: 10.4134/BKMS.2007.44.3.547 |
[4] |
Bae H O, Roh J. Weighted estimates for the incompressible fluid in exterior domains. J Math Anal Appl, 2009, 355: 846-854
doi: 10.1016/j.jmaa.2009.02.016 |
[5] |
Bae H O, Roh J. Optimal weighted estimates of the flows in exterior domains. Nonlinear Analysis, 2010, 73: 1350-1363
doi: 10.1016/j.na.2010.04.067 |
[6] |
Borchers W, Miyakawa T. Algebraic ![]() ![]() doi: 10.1007/BF02391905 |
[7] |
Giga Y, Miyakawa T. Solution in ![]() ![]() doi: 10.1007/BF00276875 |
[8] |
Han P. Decay rates for the incompressible Navier-Stokes flows in 3D exterior domains. J Func Anal, 2012, 263: 3235-3269
doi: 10.1016/j.jfa.2012.08.007 |
[9] |
Han P. Decay rates of higher-order norms for the Navier-Stokes flows in 3D exterior domains. Commun Math Phys, 2015, 334: 397-432
doi: 10.1007/s00220-014-2151-5 |
[10] | Han P. Weighted decay results for the nonstationary Stokes flow and Navier-Stokes equations in half spaces. J Math Fluid Mech, 2015, 2016: 599-626 |
[11] |
He C, Miyakawa T. On ![]() ![]() doi: 10.1007/s00209-003-0551-x |
[12] | He C, Miyakawa T. On weighted-norm estimates for nonstationary incompressible Navier-Stokes flows in a 3D exterior domain. J Diffenetial Equations, 2009, 246: 2355-2386 |
[13] |
He C, Wang L. Weighted ![]() ![]() ![]() ![]() ![]() doi: 10.1007/s11425-010-0046-2 |
[14] |
He C, Xin Z. Weighted estimates for nonstationary Navier-Stokes equations in exterior domain. Methods Appl Anal, 2000, 7(3): 443-458
doi: 10.4310/MAA.2000.v7.n3.a1 |
[15] |
Iwashita H. ![]() ![]() ![]() ![]() ![]() ![]() ![]() doi: 10.1007/BF01443518 |
[16] |
Kato T. Strong ![]() ![]() ![]() ![]() doi: 10.1007/BF01174182 |
[17] |
Kozono H. Global ![]() ![]() ![]() ![]() ![]() doi: 10.1016/0022-0396(89)90114-9 |
[18] | Miyakawa T. On nonstationary solutions of the Navier-Stokes equations in an exterior domain. Hiroshima Math J, 1982, 12: 115-140 |
[19] |
Miyakawa T, Sohr H. On energy inequality, smoothness and large time behavior in ![]() ![]() doi: 10.1007/BF01161636 |
[20] | 张庆华, 朱月萍. 半空间上Stokes半群的加权时空估计及其在非稳恒Navier-Stokes方程中的应用. 数学物理学报, 2021, 41A(6): 1657-1670 |
Zhang Q, Zhu Y. Weighted temporal-spatial estimates of the Stokes semigroup with applications to the non-stationary Navier-Stokes Equation in half-space. Acta Math Sci, 2021, 41A(6): 1657-1670 | |
[21] |
Zhang Q, Zhu Y. Rapid time-decay phenomenon of the incompressible Navier-Stokes flow in exterior domains. Acta Mathematica Sinica, English series, 2022, 38(4): 745-760
doi: 10.1007/s10114-022-1116-4 |
[1] | Shoujun Huang,Juan Wang. Blow up of Solutions to Semilinear Wave Equations with Variable Coefficient for Nonlinearity in an N-Dimensional Exterior Domain [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1259-1268. |
[2] | Huang Wenli, Tao Xiangxing. Weighted Estimates on the Neumann Problem for L2 for Schrödinger Equations in Lipschitz Domains [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1165-1185. |
[3] | CHEN Dong-Xiang, LI Qian-Li. Two Weighted Estimates for Toeplitz Operator Related to Singular Integrals Operator with Non-smooth Kernels [J]. Acta mathematica scientia,Series A, 2013, 33(6): 1122-1132. |
[4] | ZHENG Shen-Zhou, LU Han-Fang. Liouville Theorems on Subelliptic Quasilinear Equations in Unbounded Exterior Domain [J]. Acta mathematica scientia,Series A, 2012, 32(4): 644-653. |
[5] | Wu haigen;Yang han\quad ;Liu Juan. Global Existence for Semilinear wave Equations in Exterior Domain [J]. Acta mathematica scientia,Series A, 2007, 27(6): 1089-1097. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 107
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |