| [1] | Xu X, Zhao L Y, Liu C. Axisymmetric solution to coupled Navier-Stokes/Allen-Cahn equations. SIAM Journal on Mathematical Analysis, 2009, 41(6): 2246-2282 |
| [2] | Gal C G, Grasselli M. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete and Continuous Dynamical Systems, 2010, 28(1): 1-39 |
| [3] | Zhao L Y, Guo B L, Huang H Y. Vanishing viscosity limit for a coupled Navier-Stokes/Allen-Cahn system. Journal of Mathematical Analysis and Applications, 2011, 384(2): 232-245 |
| [4] | Medjo T T. On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model. Stochastics and Dynamics, 2019, 19(1): 1950007 |
| [5] | Zhao X P. Global well-posedness and decay estimates for three-dimensional compressible Navier-Stokes-Allen-Cahn system. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2022, 152(5): 1291-1322 |
| [6] | Li Y H, Ding S J, Huang M X. Blow-up criterion for an incompressible Navier-Stokes-Allen-Cahn system with different densities. Discrete and Continuous Dynamical Systems, 2016, 21(5): 1507-1523 |
| [7] | Chen M T, Guo X W. Global large solutions for a coupled compressible Navier-Stokes/Allen-Cahn system with initial vacuum. Nonlinear Analysis: Real World Applications, 2017, 37: 350-373 |
| [8] | Li Y H, Huang M X. Strong solutions for an incompressible Navier-Stokes-Allen-Cahn system with different densities. Journal of Applied Mathematics and Physics, 2018, 69(3): 1-18 |
| [9] | Deteix J, Kouamo G, Yakoubi D. Well-posedness of a semi-discrete Navier-Stokes-Allen-Cahn model. Journal of Mathematical Analysis and Applications, 2021, 496(2): 124816 |
| [10] | Oleinik O. On the mathematical theory of boundary layer for unsteady flow of incompressible fluid. Journal of Applied Mathematics and Mechanics, 1966, 30(5): 951-974 |
| [11] | Liu J G, Xin Z P. Boundary layer behavior in the fluid-dynamic limit for a nonlinear model Boltzmann equation. Archive for Rational Mechanics and Analysis, 1996, 135(1): 61-105 |
| [12] | Xie X Q. Boundary layers associated with a coupled Navier-Stokes/Allen-Cahn system: the non-characteristic boundary case. Journal of Partial Differential Equations, 2012, 25(1): 66-78 |
| [13] | FAN L L, HOU M C. Asymptotic stability of a boundary layer and rarefaction wave for the outflow problem of the heat-conductive ideal gas without viscosity. Acta Mathematica Scientia, 2020, 40B(6): 1627-1652 |
| [14] | 张浩, 汪娜. 一类弱非线性临界奇摄动积分边界问题. 数学物理学报, 2022, 42A(4): 1060-1073 |
| [14] | Zhang H, Wang N. A class of weakly nonlinear critical singularly perturbed integral boundary problems. Acta Mathematica Scientia, 2022, 42A(4): 1060-1073 |
| [15] | Chorin A J, Marsden J E. A Mathematical Introduction to Fluid Mechanics. New York: Springer-Verlag, 1997 |
| [16] | Ghil M, Ma T, Wang S H. Structural bifurcation of 2-D incompressible flows with dirichlet boundary conditions: applications to boundary-Layer separation. SIAM Journal on Applied Mathematics, 2005, 65(5): 1576-1596 |
| [17] | Ma T, Wang S H. Rigorous Characterization of Boundary Layer Separations. Cambridge: Proceedings Second MIT Conference on Computational Fluid and Solid Mechanics, 2003 |
| [18] | Ghil M, Liu J G, Wang C, Wang S H. Boundary-layer separation and adverse pressure gradient for 2-D viscous incompressible flow. Physica D: Nonlinear Phenomena, 2004, 197(1): 149-173 |
| [19] | Luo H, Wang Q, Ma T. A predicable condition for boundary layer separation of 2-D incompressible fluid flows. Nonlinear Analysis: Real World Applications, 2015, 22: 336-341 |
| [20] | Wang Q, Luo H, Ma T. Boundary layer separation of 2-D incompressible dirichlet flows. Discrete and Continuous Dynamical Systems B, 2015, 20(2): 675-682 |
| [21] | 姜倩. 阻尼 Navier-Stokes 系统的渐近吸引子与边界层分离. 四川师范大学学报, 2020, 182(3): 96-102 |
| [21] | Jiang Q. The asymptotic attractor of and boundary layer separtion of the damped Navier-Stokes system. Journal of Sichuan Normal University, 2020, 182(3): 96-102 |
| [22] | Shen W M, Wang Y, Zhang Z F. Boundary layer separation and local behavior for the steady Prandtl equation. Advances in Mathematics, 2021, 389: 107896 |
| [23] | Ma T, Wang S. Boundary layer separation and structural bifurcation for 2-D incompressible fluid flows. Discrete and Continuous Dynamical Systems, 2004, 10(1/2): 459-472 |
| [24] | Ma T, Wang S H. Geometric theory of incompressible flows with applications to fluid Dynamics. Providence: American Mathematics Society, 2005 |