| [1] | Ervin V J. Approximation of coupled Stokes-Darcy flow in an axisymmetric domain. Computer Methods in Applied Mechanics and Engineering, 2013, 258: 96-108 | | [2] | Hou Y R, Qin Y. On the solution of coupled Stokes/Darcy model with Beavers-Joseph interface condition. Computers & Mathematics with Applications, 2019, 77(1): 50-65 | | [3] | Cao Y Z, Gunzburger M, Hu X L, et al. Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM Journal on Numerical Analysis, 2010, 47(6): 4239-4256 | | [4] | Kanschat G, Riviére B. A strongly conservative finite element method for the coupling of Stokes and Darcy flow. Journal of Computational Physics, 2010, 229(17): 5933-5943 | | [5] | Glowinshi R. Finite element methods for incompressible viscous flow. Handbook of Numerical Analysis, 2003, 9: 3-1176 | | [6] | Lipnikov K, Vassilev D, Yotov I. Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Numerische Mathematik, 2014, 126(2): 321-360 | | [7] | Chen W B, Wang F, Wang Y Q. Weak Galerkin method for the coupled Darcy-Stokes flow. IMA Journal of Numerical Analysis, 2016, 36(2): 897-921 | | [8] | Girault V, Riviére B. DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM Journal on Numerical Analysis, 2009, 47(3): 2052-2089 | | [9] | Markus S, Houstis E N, Catlin A C, et al. An agent-based netcentric framework for multidisciplinary problem solving environments (MPSE). Inter J Comput Engineering Sci, 2000, 1(1): 33-60 | | [10] | Mu M. Solving composite problems with interface relaxation. SIAM Journal on Scientific Computing, 1999, 20(4): 1394-1416 | | [11] | Gatica G N, Oyarzúa R, Sayas F J. A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes-Darcy coupled problem. Computer Methods in Applied Mechanics and Engineering, 2011, 200(21/22): 1877-1891 | | [12] | Layton W J, Schieweck F, Yotov I. Coupling fluid flow with porous media flow. SIAM Journal on Numerical Analysis, 2002, 40(6): 2195-2218 | | [13] | He X M, Li J, Lin Y P, et al. A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition. SIAM J Sci Comput, 2015, 37(5): S264-S290 | | [14] | Cao Y Z, Gunzburger M, He X M, et al. Robin-Robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition. Numer Math, 2011, 117(4): 601-629 | | [15] | Chen W B, Gunzburger M, Hua F, et al. A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system. SIAM Journal on Numerical Analysis, 2011, 49(3): 1064-1084 | | [16] | Hou Y R. Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model. Applied Mathematics Letters, 2016, 57: 90-96 | | [17] | Qin Y, Hou Y R. Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Navier-Stokes/Darcy model. Acta Mathematica Scientia, 2018, 38(4): 1361-1369 | | [18] | Zuo L Y, Du G Z. A multi-grid technique for coupling fluid flow with porous media flow. Computers & Mathematics with Applications, 2018, 75(11): 4012-4021 | | [19] | Zuo L Y, Hou Y R. A two-grid decoupling method for the mixed Stokes-Darcy model. Journal of Computational and Applied Mathematics, 2015, 275: 139-147 | | [20] | Cao Y Z, Gunzburger M, Hua F, et al. Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Communications in Mathematical Sciences, 2010, 8(1): 1-25 | | [21] | Cao Y Z, Gunzburger M, He X M, et al. Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math Comput, 2014, 83(288): 1617-1644 | | [22] | Cao Y Z, Gunzburger M, Hu X L, et al. Finite element approximation for time-dependent Stokes-Darcy flow with Beavers-Joseph interface boundary condition. SIAM J Numer Anal, 2010, 47(6): 4239-4256 | | [23] | Li Y, Hou Y R. A second-order partitioned method with different subdomain time steps for the evolutionary Stokes-Darcy system. Mathematical Methods in the Applied Sciences, 2018, 41(5): 2178-2208 | | [24] | Layton W J, Tran H, Xiong X. Long time stability of four methods for splitting the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems. Journal of Computational and Applied Mathematics, 2012, 236(13): 3198-3217 | | [25] | Layton W J, Tran H, Trenchea C. Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J Numer Anal, 2013, 51(1): 248-272 | | [26] | Shan L, Zheng H B, Layton W J. A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model. Numer Meth Partial Differ Equ, 2013, 29(2): 549-583 | | [27] | Guzel A, Layton W J. Time filters increase accuracy of the fully implicit method. BIT Numerical Mathematic, 2018, 58(2): 301-315 | | [28] | Li Y, Hou Y R, Layton W J. Adaptive partitioned methods for the time-accurate approximation of the evolutionary Stokes-Darcy system. Computer Meth Appl Mech Engineering, 2020, 364: 112923 | | [29] | Qin Y, Hou Y R. The time filter for the non-stationary coupled Stokes/Darcy model. Applied Numerical Mathematics, 2019, 146: 260-275 | | [30] | Girault V, Raviart P A. Finite Element Approximation of the Navier-Stokes Equations. Berlin: Springer-Verlag, 1981 | | [31] | Mu M, Zhu X H. Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Mathematics of Computation, 2010, 79(270): 707-731 | | [32] | Li J, Lin X L, Chen Z X. Finite Volume Methods for the Incompressible Navier-Stokes Equations. Berlin: Springer-Verlag, 2021 | | [33] | 李剑. 不可压缩 Navier-Stokes 方程数值方法. 北京: 科学出版社, 2019 | | [33] | Li J. Numerical Methods for the Incompressible Navier-Stokes Equations. Beijing: Science Press, 2019 | | [34] | 李剑, 白云霄, 赵昕. 数学物理方程的现代数值方法. 北京: 科学出版社, 2022 | | [34] | Li J, Bai Y X, Zhao X. Modern Numerical Methods for Mathematical Physics Equations. Beijing: Science Press, 2022 | | [35] | Qin Y, Wang Y S, Li J. A variable time step time filter algorithm for the geothermal system. SIAM Journal on Numerical Analysis, 2022, 60(5): 2781-2806 | | [36] | Cao L L, He Y N, Li J. A parallel Robin-Robin domain decomposition method based on modified characteristic FEMs for the time-dependent dual-porosity-Navier-Stokes model with the Beavers-Joseph interface condition. Journal of Scientific Computing, 2022, 90(1): 1-34 | | [37] | Jiang N, Qiu C. An efficient ensemble algorithm for numerical approximation of stochastic Stokes-Darcy equations. Computer Methods in Applied Mechanics and Engineering, 2019, 343: 249-275 | | [38] | Li Y, Hou Y R, Rong Y. A second-order artificial compression method for the evolutionary Stokes-Darcy system. Numerical Algorithms, 2020, 84(3): 1019-1048 | | [39] | Li Y, Hou Y R. Error estimates of second-order decoupled scheme for the evolutionary Stokes-Darcy system. Applied Numerical Mathematics, 2020, 154: 129-148 |
|