| [1] | Alexandre R, Wang Y, Xu C, et al. Well-posedness of the Prandtl equation in Sobolev spaces. J Amer Math Soc, 2015, 28(3): 745-784 | | [2] | Chen D, Wang Y, Zhang Z. Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces. J Differential Equations, 2018, 264(9): 5870-5893 | | [3] | Dalibard A L, Masmoudi N. Separation for the stationary Prandtl equation. Publ Math Inst Hautes Etudes Sci, 2019, 130: 187-297 | | [4] | Ding M, Gong S. Global existence of weak solution to the compressible Prandtl equations. J Math Fluid Mech, 2017, 19(2): 239-254 | | [5] | E W N. Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math Sin (Engl Ser), 2000, 16(2): 207-218 | | [6] | E W N, Engquist B. Blowup of solutions of the unsteady Prandtl's equation. Comm Pure Appl Math, 1997, 50: 1287-1293 | | [7] | Fan L, Ruan L, Yang A. Local well-posedness of solutions to the boundary layer equations for 2D compressible flow. J Math Anal Appl, 2021, 493(2): 124565 | | [8] | Gong S, Guo Y, Wang Y. Boundary layer problems for the two-dimensional compressible Navier-Stokes equations. Anal Appl (Singap), 2016, 14(1): 1-37 | | [9] | Gong S, Wang X. On a global weak solution and back flow of the mixed Prandtl-Hartmann boundary layer problem. J Math Fluid Mech, 2021, 23(11): 1-16 | | [10] | Gong S, Wang X, Wang Y. Stability and back flow of boundary layers for wind-driven oceanic current. Commun Math Sci, 2020, 18(3): 593-612 | | [11] | Kukavica I, Vicol V. On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun Math Sci, 2013, 11(1): 269-292 | | [12] | Kukavica I, Vicol V, Wang F. The van Dommelen and Shen singularity in the Prandtl equations. Adv Math, 2017, 307: 288-311 | | [13] | Li W, Masmoudi N, Yang T. Well-Posedness in Gevrey Function Space for 3D Prandtl Equations without structural assumption. Comm Pure Appl Math, 2022, 75(8): 1755-1797 | | [14] | Liu C, Wang Y, Yang T. On the ill-posedness of the Prandtl equations in three space dimensions. Arch Rational Mech Anal, 2016, 220: 83-108 | | [15] | Liu C, Wang Y, Yang T. A well-posedness theory for the Prandtl equations in three space variables. Adv Math, 2017, 308: 1074-1126 | | [16] | Liu C, Xie F, Yang T. MHD boundary Layers theory in Sobolev spaces without monotonicity I: Well-Posedness theory. Comm Pure Appl Math, 2019, 72(1): 63-121 | | [17] | Masmoudi N, Wong T K. Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Comm Pure Appl Math, 2015, 68(10): 1683-1741 | | [18] | Moore F K. Three-dimensional boundary layer theory. Adv Appl Mech, 1956, 4: 159-228 | | [19] | Oleinik O A. On the system of Prandtl equations in boundary-layer theory. Dokl Akad Nauk SSSR, 1963, 150: 28-31 | | [20] | Oleinik O A, Samokhin V N. Mathematical models in boundary layer theory. Routledge, 2018 | | [21] | Prandtl L. über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandl. III, Internat Math-Kong, Heidelberg, Teubner, Leipzig, 1904, 452: 575-584 | | [22] | Paicu M, Zhang P. Global existence and the decay of solutions to the Prandtl system with small analytic data. Arch Ration Mech Anal, 2021, 241(1): 403-446 | | [23] | Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm Math Phys, 1998, 192(2): 433-461 | | [24] | Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Comm Math Phys, 1998, 192(2): 463-491 | | [25] | Schlichting H, Gersten K. Boundary-Layer Theory, Enlarged Edition. New York: Springer-Verlag, 2000 | | [26] | Sears W R, Telionis D P. Boundary-layer separation in unsteady flow. SIAM J Math Anal, 1975, 28(1): 215-235 | | [27] | Shen W, Wang Y, Zhang Z. Boundary layer separation and local behavior for the steady Prandtl equation. Adv Math, 2021, 389: 107896 | | [28] | Wang Y, Williams M. The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions. Ann Inst Fourier (Grenoble), 2013, 62(6): 2257-2314 | | [29] | Wang Y, Xie F, Yang T. Local well-posedness of Prandtl equations for compressible flow in two space variables. SIAM J Math Anal, 2015, 47(1): 321-346 | | [30] | Wang Y, Zhu S. Well-posedness of thermal boundary layer equation in two-dimensional incompressible heat conducting flow with analytic datum. Math Methods Appl Sci, 2020, 43(7): 4683-4716 | | [31] | Wang Y, Zhu S. Back flow of the two-dimensional unsteady Prandtl boundary layer under an adverse pressure gradient. SIAM J Math Anal, 2020, 52(1): 954-966 | | [32] | Wang Y, Zhu S. On back flow of boundary layers in two-dimensional unsteady incompressible heat conducting flow. J Math Phys, 2022, 63(8): 081504 | | [33] | Xin Z, Zhang L. On the global existence of solutions to the Prandtl's system. Adv Math, 2004, 181: 88-133 | | [34] | Xin Z, Zhang L, Zhao J. Global well-posedness and regularity of weak solutions to the Prandtl's system. arXiv:2203.08988v1, 2022 | | [35] | Xu C, Zhang X. Long time well-posedness of Prandtl equations in Sobolev space. J Differential Equations, 2017, 263(12): 8749-8803 | | [36] | Zhang P, Zhang Z. Long time well-posedness of Prandtl system with small and analytic initial data. J Funct Anal, 2016, 270(7): 2591-2615 |
|