设犈是一致凸Banach空间,满足Opial条件或具有Frechet可微范数,犆是犈的非空闭凸子集,且犜:犆→犆是非扩张映象.又设对任何初始数据狓1 ∈犆,序列{狓狀}由下列修改了的Ishikawa迭代程序生成:狓狀+1 =狋狀犜狀(狊狀犜狀狓狀+ (1-狊狀)狓狀)+ (1-狋狀)狓狀, 狀≥1, (I)其中,数列{狋狀}与{狊狀}满足下列条件(i)和(ii)之一:(i)狋狀∈ [犪,犫]且狊狀∈ [0,犫];(ii)狋狀∈ [犪,1]且狊狀∈ [犪,犫],这里,常数犪,犫满足0<犪≤犫<1.作者证明了,犜有不动点的充要条件是,{狓狀}
弱收敛且{‖狓狀-犜狓狀‖}收敛到0.而且,由此即知,若犜有不动点,则{狓狀}弱收敛到犜的一个不动点.