数学物理学报 2014, 34(4) 823-827 DOI:     ISSN: 1003-3998 CN: 42-1226/O

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]    [关闭]                  上一篇 | 下一篇
论文
k -拟-*-A 类压缩算子的性质
李晓春|高福根
河南师范大学 数学与信息科学学院 河南 新乡 453007
摘要

T是一个Hilbert空间算子, 若满足T*k(|T2|-|T*|2)Tk≥0, 则称Tk -拟-*-A 类算子. 著名的Fuglede-Putnam定理: 若AX=XB, 则A*X=XB*, 其中AB是正规算子. 该文中, 首先证明了若T是一个压缩的k -拟-*-A 类算子, 则T有非平凡的不变子空间或者是真压缩算子, 且正算子D=T*k(|T2|-|T*|2)Tk是强稳定压缩算子; 其次证明了k -拟-*-A 类算子不是超循环算子; 最后证明了若X是Hilbert-Schmidt算子, A 和(B*)-1k -拟-*-A 类算子, 满足AX=XB, 则A*X=XB*.

关键词k -拟-*-A 类算子 压缩算子 Fuglede-Putnam 定理
收稿日期  2013-04-23   修回日期  2014-03-28   网络版发布日期  2014-08-25  
DOI:
基金项目:

国家自然科学基金(11301155, 11271112)、河南省教育厅科学技术研究重点项目(13B110077)、河南师范大学博士科研启动费支持课题(qd12102)和河南师范大学青年基金资助

通讯作者:
作者简介:

Copyright © 2008 by 数学物理学报