数学物理学报 ›› 2025, Vol. 45 ›› Issue (2): 359-370.

• • 上一篇    下一篇

含引力的定常 Euler 方程组球对称解的适定性

王啟明1(),邓雪梅2,*()   

  1. 1三峡大学理学院 湖北宜昌 443002
    2三峡大学数学研究中心 湖北宜昌 443002
  • 收稿日期:2024-04-16 修回日期:2024-10-05 出版日期:2025-04-26 发布日期:2025-04-09
  • 通讯作者: 邓雪梅 E-mail:qiming.wang@ctgu.edu.cn;dxuemei@ctgu.edu.cn
  • 作者简介:王啟明,E-mail:qiming.wang@ctgu.edu.cn
  • 基金资助:
    国家自然科学基金(12061080)

The Well-Posedness of Spherically Symmetric Solutions to the Steady Euler Equations with Gravitation

Qiming Wang1(),Xuemei Deng2,*()   

  1. 1College of Science, China Three Gorges University, Hubei Yichang 443002
    2Three Gorges Mathematical Research Center, China Three Gorges University, Hubei Yichang 443002
  • Received:2024-04-16 Revised:2024-10-05 Online:2025-04-26 Published:2025-04-09
  • Contact: Xuemei Deng E-mail:qiming.wang@ctgu.edu.cn;dxuemei@ctgu.edu.cn
  • Supported by:
    NSFC(12061080)

摘要:

以带引力项的可压缩 Euler 方程组为模型, 该文研究了三维球对称扩张管道中跨音速激波解的存在唯一性. 假设流体受引力影响充分小, 在管道入口处给定特殊的超音速初值条件, 当管道出口处的压力 p 在某个确定范围内时, 通过证明出口处压力是激波位置的严格单调函数, 从而证明了管道内跨音速激波解的存在唯一性.

关键词: 跨音速激波解, Bernoulli 函数, Euler 方程组, 球对称流, 引力

Abstract:

This paper studies the existence and uniqueness of transonic shock solutions to the steady compressible Euler equations with gravity in a three-dimensional spherically symmetric divergent nozzle. Assuming that the influence of gravity on the fluid is sufficiently small and the supersonic initial conditions are given at the entrance, it can be proved that when the pressure p at the exit falls in certain range, there exists a unique transonic shock solution within the nozzle by demonstrating that the pressure at the outlet is a strictly monotone function of the shock location.

Key words: transonic solution, Bernoulli's function, Euler equations, spherically symmetrical flow, gravity

中图分类号: 

  • O175.2