基于优化控制核自旋谱编辑技术的乳酸信号选择
A Spectral Editing Technique Based on Optimized Control of Nuclear Spin to Realize Lactate Signal Selection
通讯作者: *Tel: 021-62233281, E-mail:dxwei@phy.ecnu.edu.cn;# Tel: 021-62234328, E-mail:yfyao@phy.ecnu.edu.cn.
收稿日期: 2024-03-28 网络出版日期: 2024-04-28
基金资助: |
|
Corresponding authors: *Tel: 021-62233281, E-mail:dxwei@phy.ecnu.edu.cn;# Tel: 021-62234328, E-mail:yfyao@phy.ecnu.edu.cn.
Received: 2024-03-28 Online: 2024-04-28
乳酸能够为机体提供大量能量,以维持细胞神经系统的稳定.医学上也常常将乳酸作为信号分子来即时监测机体的健康水平.准确、高效地检测活体组织中乳酸分子的含量变化,能够提供有关生物体机能和健康状况的重要信息,对疾病的早期诊断也具有一定的意义.目前文献中报道了几种利用磁共振波谱技术检测乳酸的方法,包括长TE滤波技术、多量子滤波技术,其信号选择性和效率存在一定的局限性.本文提出了一种可对乳酸信号进行选择性滤波的新方法,利用优化控制脉冲对核自旋参数具有特异性的特点,将乳酸分子甲基和次甲基上的四个质子转变为二自旋Zeeman序,实现对乳酸分子甲基信号的高效、高选择性检测.利用该脉冲序列方法,我们先后在混合物和高分子样品中,实现了对乳酸分子或类似化学基团信号的选择性检测.这项研究为在复杂体系中高效选择乳酸分子的信号提供了新的思路和方法.
关键词:
Lactate can provide a large amount of energy to the body to maintain the stability of the cellular nervous system. In medicine, lactate is often used as a signaling molecule to monitor the health level of the body in a timely manner. Accurately and efficiently detecting changes in the content of lactate in living tissues can provide important information about the physiological functions and health status of the organism, and also has certain significance for the early diagnosis of diseases. Several methods for detecting lactate using magnetic resonance spectroscopy techniques have been reported in literature, including long TE filtering technology and multiple quantum filtering technology, which have certain limitations in signal selectivity and efficiency. Here we propose a new method for selectively filtering lactate signals, which uses optimized control pulses to specifically transform the four hydrogen protons on the methyl and methine of lactate molecules into a two-spin Zeeman order, achieving efficient and highly selective detection of the methyl signal of lactate. Using this pulse sequence method, we have successively achieved selective detection of the signals of lactate or similar chemical groups in mixtures and polymer samples. This study provides new ideas and methods for efficiently selecting the signals of lactate in complex systems.
Keywords:
本文引用格式
邵正泽, 王行乐, 杨雪, 辛家祥, 魏达秀, 姚叶锋.
SHAO Zhengze, WANG Xingle, YANG Xue, XIN Jiaxiang, WEI Daxiu, YAO Yefeng.
引言
传统检测人体乳酸的方法有酶催化法[3]、化学氧化法[4]、电化学法[5]和酶电极感应器法[6]等,这些方法可以检测出血液样本中的乳酸浓度,但是检测过程繁琐且会对人体造成损伤.磁共振波谱(MRS)作为一种无创的检测方法,被应用于组织器官中乳酸分子信号的直接检测[7,8].目前文献中主要报道了两种MRS方法,一种是长TE滤波技术[9],通过设置较长的演化时间,使得与乳酸信号重叠的脂质信号因弛豫而衰减,该方法的不足之处是乳酸信号也会因弛豫而衰减,检测的灵敏度会降低[10];另一种是基于多量子滤波技术,通过将乳酸中的质子制备成双量子[11]或者零量子态[12],同时运用梯度脉冲压制脂质信号,该方法的缺点是理论效率最多为50%,即一半的乳酸信号会损失[13,14].
利用脉冲序列实现特定分子的选择性信号检测时,可行的办法之一是选择合适的量子态进行状态编辑[11],二是设计合适的脉冲提高初末态的转化效率[15].优化控制脉冲被发现能够为初态到末态的转化提供最优化的转移路径.与传统的核磁共振(NMR)脉冲序列不同,优化脉冲充分考虑脉冲施加期间核自旋的演化,将初态到末态的脉冲分解为几百甚至上千个小脉冲片段,通过迭代GRAPE算法对小脉冲的相位进行优化,最终得到以最大效率实现初末态转化的优化脉冲[16].在本课题组先前的工作中,已针对优化控制脉冲展开了初步的研究应用,开发了一种基于优化控制脉冲的单态滤波方法,并借助该方法对多种生化分子的NMR信号进行了选择性检测[17,18].然而,很多活体组织中的乳酸浓度只有不到1 mmol/L,针对乳酸的单态滤波方法无法提供足够高的灵敏度来检测出低浓度环境中的乳酸信号[19].
1 理论部分
图1是谱编辑方法选择性检测乳酸分子的脉冲序列.其中,WS(Water Suppression)模块脉冲用于压制水峰,OC I(Optimal Control I)模块可将由乳酸甲基的3个1H自旋(标记为I1,I2,I3)和次甲基的1个1H自旋(标记为I4)组成的四自旋耦合体系,从热平衡态I1z + I2z + I3z + I4z转化为二自旋Zeeman序2I1zI4z + 2I2zI4z + 2I3zI4z + I4z.该自旋态不受梯度场的影响,因此在施加梯度脉冲Gz将其它信号散相时,可保留二自旋Zeeman序.OC II(Optimal Control II)模块可将该二自旋Zeeman序转化为乳酸甲基质子的单自旋Zeeman序I1x + I2x + I3x + I4z(可观测态),从而实现对乳酸甲基信号的选择性检测.
图1
图1
基于谱编辑方法选择性检测乳酸的脉冲序列,命名为OC-谱编辑,黑色矩形分别表示水抑制脉冲模块WS、优化控制脉冲模块OC I以及优化控制脉冲模块OC II,黑色钟形表示用于相干散相的梯度场
Fig. 1
The pulse sequence based on spectral editing method to selectively detect lactate, which is called OC-spectral editing method. The black rectangles represent water suppression pulse (WS), pulses of OC I and OC II, respectively. The black bell denotes the gradient field used to coherence diphase
图1中选择性检测乳酸的优化控制脉冲模块OC I和OC II的持续时间均为70 ms,OC I和OC II均包含了1 000个小脉冲,这些小脉冲分别具有不同的幅值和相位(见附件材料S1),在每一个小脉冲施加之后,将乳酸分子核自旋态的密度矩阵与目标核自旋态的密度矩阵相乘,针对相乘后矩阵的迹实施归一化处理(见附件材料S2),得到乳酸分子1H自旋体系的演化轨迹[21].经过OC I和OC II,乳酸分子甲基和次甲基中1H所组成的核自旋体系随时间的演化轨迹如图2所示.从图中可以看出,基于GRAPE算法的优化控制脉冲能够将乳酸分子甲基和次甲基中1H所组成的核自旋体系,以接近100%的理论效率由初始态转化至目标态,从而实现对乳酸分子高效的选择性检测.
图2
图2
在优化脉冲(a) OC I和(b) OC II作用下的乳酸分子甲基和次甲基1H核自旋状态演化轨迹图
Fig. 2
The evolution trajectory of the 1H spin states of lactate methyl and methyne when applying the optimization pulses (a) OC I and (b) OC II
2 实验部分
2.1 样品
实验过程中用到的试剂如下:重水(D2O,99.9%,Adamas),乳酸(Lactic Acid,98%,Aladdin),十二烷基硫酸钠(Sodium Dodecyl Sulfate,SDS,Adamas),氘代氢氧化钠(NaOD,97%,Purechemland),聚乳酸-聚乙二醇嵌段共聚物(PEG900-b-PLA1500,Sigma-Aldrich),氘代氯仿(CDCl3,99.8%,Adamas),离体小牛血清(Calf Serum,Adamas).
样品1:乳酸水溶液.将乳酸溶于D2O中,用NaOD将溶液的pH调至中性,乳酸的浓度为50 mmol/L,将样品转移至外径5 mm的NMR样品管中.
样品2:乳酸与SDS的混合物水溶液.将乳酸与SDS溶于D2O中,用NaOD将溶液的pH调至中性,乳酸的浓度为50 mmol/L,SDS的浓度为30 mmol/L,将样品转移至外径5 mm的NMR样品管中.
样品3:离体血清.将D2O与离体小牛血清按1∶1的体积混合,将样品转移至外径5 mm的NMR样品管中.
样品4:聚乳酸水溶液.将聚乳酸-聚乙二醇嵌段共聚物溶于CDCl3中,乳酸单元的浓度为50 mmol/L,将样品转移至外径5 mm的NMR样品管中.
2.2 NMR实验
实验所用仪器为Bruker AVANCE III 500 MHz液体NMR谱仪,采用Bruker双共振宽带高分辨探头.实验温度均为37 ℃.
1H NMR单脉冲实验参数如下:射频中心(O1)定为δ 4.70,接收机增益(RG)设置为4,累加次数8.
OC-谱编辑序列实验参数如下:WS脉冲的施加时间为4 s;梯度脉冲Gz的时间和强度分别为1 ms和5 Gs/cm(1 Gs=10-4 T);优化控制脉冲(OC I和OC II)的功率为29.1 dBm,持续时间均为70 ms;O1定为δ 1.37,RG设置为4,累加次数8.
OC-单态脉冲序列实验参数如下:WS脉冲的施加时间为4 s;梯度脉冲Gz的时间和强度分别为1 ms和5 Gs/cm;连续波CW(Continuous Wave)的时间为0.57 s;优化控制脉冲的功率为29.1 dBm,持续时间均为70 ms;O1定为δ 1.37,RG设置为4,累加次数8.
CPMG序列实验参数如下:WS脉冲的施加时间为4 s;回波时间为144 ms,回波个数为1,O1定为 δ 4.70,RG设置为4,累加次数8.
3 结果与讨论
3.1 乳酸水溶液中乳酸分子信号的选择性观测
图3
图3
乳酸分子的一维1H NMR谱图.谱图上方为乳酸分子的化学结构图
Fig. 3
1H NMR spectrum of aqueous lactate solution. The chemical structure of lactate is shown above the spectrum
为了分析谱编辑脉冲序列的特点,本文利用MATLAB软件模拟了不同脉冲序列对乳酸分子甲基1H信号的选择效率.图4对比了使用单脉冲激发、OC-谱编辑、CMPG以及OC-单态脉冲序列检测乳酸分子甲基的1H NMR模拟谱图.图4(a)为单脉冲激发得到的常规1H NMR模拟谱,将其中的甲基1H信号强度(均指峰面积)定义为100%.图4(b)为OC-谱编辑脉冲序列获得的1H NMR谱,乳酸分子的甲基1H信号呈现为正的双峰,其信号强度约为常规1H NMR谱中甲基1H信号的99%.图4(c)为CPMG脉冲序列(TE = 144 ms)获得的1H NMR谱,乳酸分子的甲基1H信号强度约为常规1H NMR谱中甲基1H信号的99%.由于施加的回波时间与乳酸J耦合常数的倒数相等,导致甲基1H的核自旋态演化出一个负的相位,因而此处乳酸分子甲基信号变为负向的双峰.图4(d)为OC-单态脉冲序列获得的1H NMR谱,乳酸分子的甲基信号同样为正的双峰,但其信号强度仅约为常规1H NMR谱中甲基1H信号的50%.由此可见,OC-谱编辑脉冲序列选择性检测乳酸的理论效率接近100%,远高于OC-单态脉冲序列检测乳酸的效率.
图4
图4
使用(a)单脉冲激发、(b) OC-谱编辑、(c) CMPG以及(d) OC-单态脉冲序列检测乳酸分子甲基的1H NMR模拟谱图.右图为方框内信号的局部放大图
Fig. 4
Simulated 1H NMR spectra obtained by (a) single-pulse sequence, (b) OC-spectral editing pulse sequence, (c) the CPMG pulse sequence, and (d) the OC singlet-state pulse sequence to selectively detect the signal of methyl in lactate. The inset on the right provides a magnified view of the signal within the box
图5展示了使用单脉冲激发、OC-谱编辑、CMPG以及OC-单态脉冲序列检测乳酸(样品1)的1H NMR实验谱.图5(a)是对样品1施加单脉冲得到的常规1H NMR实验谱,将其中的甲基1H信号强度定义为100%.图5(b)是对样品1施加OC-谱编辑脉冲序列所获得的1H NMR实验谱,乳酸分子甲基1H信号为正的双峰,其信号强度约为常规1H NMR实验谱中甲基1H信号强度的87%.图5(c)是对样品1施加CPMG序列所获得的1H NMR实验谱,乳酸分子甲基信号经过长回波演化为负的双峰,其信号强度约为常规谱中甲基1H信号的80%.图5(d)是对样品1施加OC-单态脉冲序列所获得的1H NMR实验谱,乳酸分子甲基信号为正的双峰,其信号强度约为常规谱中甲基1H信号的30%.实验表明,OC-谱编辑脉冲序列、CPMG序列和OC-单态脉冲序列选择性检测乳酸的实验效率略低于理论值,这可能是由于实验中受T1和T2弛豫的影响以及磁场不均匀的问题,导致检测到的乳酸1H信号有所衰减.理论模拟和实验结果表明,OC-谱编辑脉冲序列选择性检测乳酸的效率接近OC-单态脉冲序列的两倍,前者有望应用于混合溶液中乳酸信号的靶向检测.
图5
图5
对样品1施加(a)单脉冲、(b) OC-谱编辑脉冲序列、(c) CPMG序列和(d) OC-单态脉冲序列所获得的1H NMR谱图. 右图为方框内信号的局部放大图
Fig. 5
1H NMR spectra obtained by applying (a) a single pulse, (b) spectral editing pulse sequence, (c) CPMG sequence, and (d) singlet state pulse sequence to sample 1, respectively. The inset on the right provides a magnified view of the signal within the box
3.2 乳酸和十二烷基硫酸钠(SDS)混合物水溶液中乳酸分子信号的选择性观测
图6展示了使用单脉冲激发样品2所获得的一维1H NMR谱图,谱图上方显示了SDS分子的化学结构.图中,SDS甲基质子的NMR信号呈现为正三重峰,位于δ 0.94;SDS亚甲基质子Ha和Ha’的NMR信号位于δ 1.74,Hb和Hb’的NMR信号位于δ 4.09,呈现为正三重峰.SDS其余亚甲基质子的NMR信号分布于δ 1.37附近,与乳酸甲基质子的NMR信号重合;SDS甲基与亚甲基中质子之间的J耦合常数为6.9 Hz.
图6
图6
乳酸分子和SDS混合物水溶液(样品2)的1H NMR谱图. 谱图上方为SDS分子的化学结构
Fig. 6
The 1H NMR spectrum of aqueous solution of lactate and SDS (sample 2). The chemical structure of SDS is shown above the spectrum
图7展示了对样品2施加单脉冲、OC-谱编辑、CMPG以及OC-单态脉冲序列获得的1H NMR谱图.图7(a)是对样品2施加单脉冲得到的常规1H NMR实验谱,将其中乳酸甲基1H信号强度定义为100%. 图7(b)是对样品2施加OC-谱编辑脉冲序列所获得的1H NMR实验谱,乳酸分子的甲基1H信号为正的双峰,其信号强度约为常规谱中甲基1H信号强度的82%.图7(c)是对样品2施加CPMG序列所获得的1H NMR实验谱,乳酸分子甲基信号经过长回波演化为负的双峰,其信号强度约为常规谱中甲基1H信号的73%.图7(d)是对样品2施加OC-单态脉冲序列所获得的1H NMR实验谱,乳酸分子甲基1H信号为正的双峰,其信号强度约为常规谱中甲基1H信号的25%.另外,我们采用类似图4的模拟方法计算了OC-谱编辑、CPMG和OC-单态脉冲序列对SDS信号的抑制效果,将常规谱中SDS甲基1H信号强度记录为100%,CPMG序列使δ 0.94处的SDS甲基1H信号降低了50%,而OC-谱编辑和OC-单态脉冲序列使δ 0.94处的SDS甲基1H信号降低了90%.实验结果表明,在乳酸和SDS混合物水溶液中,CPMG序列和OC-单态脉冲序列虽然能够抑制与乳酸分子重合的SDS信号,但乳酸自身的信号强度也有较大损失,而本文提出的谱编辑方法不仅能显著抑制SDS的信号,还能高效地保留乳酸信号.
图7
图7
对样品2施加(a)单脉冲、(b) OC-谱编辑脉冲序列、(c) CPMG序列和(d) OC-单态脉冲序列所获得的1H NMR谱图,右图为方框内信号的局部放大图
Fig. 7
1H NMR spectra obtained by applying (a) a single pulse, (b) OC-spectral editing pulse sequence, (c) CPMG sequence, and (d) OC-singlet state pulse sequence to sample 2, respectively. The inset on the right provides a magnified view of the signal within the box
图8
图8
对样品2施加TE = 30 ms(a)、70 ms(b)、144 ms(c)和288 ms(d)的CPMG序列所获得的1H NMR谱图. 右图为方框内信号的局部放大图
Fig. 8
1H NMR spectra obtained by applying CPMG sequences to sample 2, in which TE were 30 ms (a), 70 ms (b), 144 ms (c) and 288 ms (d), respectively. The inset on the right provides a magnified view of the signal within the box
3.3 离体血清中乳酸信号的选择性观测
为了测试在生物样品组织中OC-谱编辑序列对乳酸信号的选择效果,本文将该脉冲序列应用于离体血清(样品3)中乳酸信号的选择.图9展示了使用单脉冲激发样品3所获得的一维1H NMR谱图.血清中脂肪亚甲基质子的NMR信号分布于δ 1.37附近,与乳酸甲基质子的NMR信号重合.
图9
图9
离体血清的一维1H NMR谱图
Fig. 9
The one-dimensional 1H NMR spectrum of in vitro serum
图10展示了对样品3施加单脉冲和使用OC-谱编辑、CMPG以及OC-单态脉冲序列获得的1H NMR谱图.图10(a)是对样品3施加单脉冲得到的常规1H NMR实验谱,将谱中乳酸甲基的1H信号强度定义为100%.图10(b)是对样品3施加OC-谱编辑脉冲序列所获得的1H NMR实验谱,乳酸分子甲基信号为正的双峰,其信号强度约为常规谱中甲基1H信号强度的80%.图10(c)是对样品3施加CPMG序列所获得的1H NMR实验谱,乳酸分子甲基信号经过长回波演化出一个负相位,其信号强度约为常规谱中甲基1H信号的70%.图10(d)是对样品3施加OC-单态脉冲序列所获得的1H NMR实验谱,乳酸分子甲基信号为正的双峰,其信号强度约为常规谱中甲基1H信号的17%.实验结果表明,在离体血清样品中,虽然OC-单态脉冲序列能够抑制与乳酸信号重合的脂肪分子的信号,但是对乳酸信号的保留率较低,OC-谱编辑脉冲序列不仅能够显著抑制脂肪信号,而且能够大幅保留乳酸分子的信号,其选择性检测乳酸的效率约为OC-单态脉冲序列的5倍.因此,OC-谱编辑脉冲序列有望应用于活体中乳酸分子的选择性检测.
图10
图10
对样品3施加(a)单脉冲、(b) OC-谱编辑脉冲序列、(c) CPMG序列和(d) OC-单态脉冲序列所获得的1H NMR谱图. 右图为方框内信号的局部放大图
Fig. 10
1H NMR spectra obtained by applying (a) single pulse, (b) OC-spectral editing pulse sequence, (c) CPMG sequence, and (d) OC-singlet state pulse sequence to sample 3, respectively. The inset on the right provides a magnified view of the signal within the box
3.4 聚乳酸分子中乳酸基团信号的选择性检测
图11
图11
聚乳酸-聚乙二醇嵌段共聚物溶液的一维1H NMR谱图. 谱图上方为聚乳酸-聚乙二醇嵌段共聚物重复单元的化学结构
Fig. 11
The one-dimensional 1H NMR spectrum of the aqueous solution of polylactic acid-block-polyethylene glycol. The chemical structure is shown above the spectrum
图12展示了对样品4采用单脉冲激发所得的常规1H NMR谱图和使用OC-谱编辑脉冲序列选择性检测聚乳酸分子中不同乳酸基团的1H NMR谱图.通过改变优化控制脉冲的中心频率实现了对聚乳酸中的不同信号选择(见附件材料S4),分别测试了δ 1.33(b)和δ 1.35(c)处的乳酸信号.右图中的灰色谱线是使用DMFIT软件对滤波后的乳酸信号进行拟合得到的模拟谱(详细信息见附件材料S5).拟合结果显示,δ 1.33处的乳酸信号强度约为常规谱中对应信号的62%,δ 1.35处的乳酸信号强度约为常规谱中对应信号的61%,这展示出OC-谱编辑序列对乳酸信号的高效选择性.
图12
图12
对样品4施加单脉冲(a)和OC-谱编辑脉冲序列对δ1.33 (b)以及1.35 (c)处信号进行选择所获得的1H NMR谱图. OC-谱编辑滤波谱的信号强度放大了两倍,右图为方框内信号的局部放大图
Fig. 12
1H NMR spectra obtained by applying a single pulse (a), OC-spectral editing pulse sequence to δ1.33 (b) and δ1.35 (c) of sample 4, respectively. Signal intensity of OC-spectral editing filtered spectrum has been magnified twofold. The inset on the right provides a magnified view of the signal within the box
上述实验结果表明:在处理复杂体系中的乳酸信号时,OC-谱编辑脉冲序列在选择性和滤波效率方面明显优于CPMG序列(TE = 144 ms)和OC-单态脉冲序列.该脉冲序列不仅效率高,还具有很好的选择性,能够实现对不同化学位移处乳酸信号的选择性检测,该方法有助于了解和测定聚乳酸分子的结构,进而分析与其偶联的药物浓度.后期的研究中还需要进一步设计选择性更强的脉冲,扩大可选择基团的种类.
4 总结
本文提出了一种选择性检测乳酸分子的方法,利用优化控制脉冲对核自旋参数的高敏感性,控制乳酸分子甲基和次甲基上四个质子组成的核自旋体系,通过OC I将其转化为一种二自旋Zeeman序;在施加OC II后,将二自旋Zeeman序转化为可观测态.该序列不仅可以高效选择混合物中的乳酸信号,还可用于选择性检测高分子化合物中具有不同化学位移的乳酸基团.本文的研究结果为测定高分子样品中不同基团的含量和分布提供了一种可能的途径,此方法有望应用于活体组织中乳酸分子的选择性检测.
利益冲突
无
附件材料附录(可在《波谱学杂志》官网http://magres.wipm.ac.cn浏览该论文网页版获取)
S1 谱编辑序列中优化控制脉冲幅值和相位随时间的演化图
S2 计算乳酸核自旋演化轨迹的MATLAB代码
S3 选择性检测乳酸的OC-单态脉冲序列
S4 实验中对优化控制脉冲的射频中心O1和功率AMP的调节
S5 使用DMFIT拟合聚乳酸信号的详细信息
参考文献
Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity
[J].
Lactate in the brain: from metabolic end-product to signalling molecule
[J].
DOI:10.1038/nrn.2018.19
PMID:29515192
[本文引用: 1]
Lactate in the brain has long been associated with ischaemia; however, more recent evidence shows that it can be found there under physiological conditions. In the brain, lactate is formed predominantly in astrocytes from glucose or glycogen in response to neuronal activity signals. Thus, neurons and astrocytes show tight metabolic coupling. Lactate is transferred from astrocytes to neurons to match the neuronal energetic needs, and to provide signals that modulate neuronal functions, including excitability, plasticity and memory consolidation. In addition, lactate affects several homeostatic functions. Overall, lactate ensures adequate energy supply, modulates neuronal excitability levels and regulates adaptive functions in order to set the 'homeostatic tone' of the nervous system.
An enzymatic route to produce pyruvate from lactate
[J].A bacterial strain of Acinetobacter sp., which was capable of enzymatic production of pyruvate from lactate, was cultured in a 5-l reactor with a basal salt medium. After 14 h of fed-batch fermentation, 9.56 g l(-1) cell concentration in the broth was obtained with 20 g l(-1) (178 mM) sodium lactate and 4 g l(-1) NH(4)Cl in the medium; and the biotransformation ability was 2.51 units ml(-1). The cells were harvested from one reactor and then used for pyruvate production from lactate in the same reactor. l-lactate at a concentration about 527 mM was almost stoichiometrically converted to pyruvate in 28 h. After a total 42 h of cell culture and biotransformation, the transformative yield was about 0.72 g g(-1) pyruvate from lactate and the rate of pyruvate production was calculated as 1.33 g l(-1) h(-1) during the process. The results suggested this simple enzymatic production of pyruvate from lactate should be a promising process and may bring a yield higher than that by microbial fermentation. By this process, the recovery of pyruvate from such a simple reaction liquid is relatively easy and inexpensive to perform.
Effect of sampling site, repeated sampling, pH, and PCO2 on plasma lactate concentration in healthy dogs
[J].To characterize the variation in plasma lactate concentration among samples from commonly used blood sampling sites in conscious, healthy dogs.60 healthy dogs.Cross-sectional study using a replicated Latin square design. Each dog was assigned to 1 of 6 groups (n = 10) representing all possible orders for 3 sites (cephalic vein, jugular vein, and femoral artery) used to obtain blood. Samples were analyzed immediately, by use of direct amperometry for pH, PO2, Pco2, glucose, and lactate concentration.Significant differences in plasma lactate concentrations were detected among blood samples from the cephalic vein (highest), femoral artery, and jugular vein (lowest). Mean plasma lactate concentration in the first sample obtained, irrespective of sampling site, was lower than in subsequent samples. Covariation was identified among plasma lactate concentration, pH, and PCO2, but correlation coefficients were low.Plasma lactate concentrations differed among blood samples from various sites. A reference range for plasma lactate concentration was 0.3 to 2.5 mmol/L. Differences in plasma lactate concentrations among samples from various sites and with repeated sampling, in healthy dogs, are small. Use of the reference range may facilitate the clinical use of plasma lactate concentration in dogs.
Electrochemical-enzymatic analysis of blood glucose and lactate
[J].
The significance of lactate and lipid peaks for predicting primary neuroepithelial tumor grade with proton MR spectroscopy
[J].
DOI:10.2463/mrms.mp.2017-0042
PMID:28819084
[本文引用: 1]
H-MRS is a non-invasive technique used to assess the metabolic activity of brain tumors. The technique is useful for the preoperative prediction of tumor grade, which is important for treatment planning and accurate prognosis. We used H-MRS to study the lactate peak, which appears in various conditions, including hyperglycemia, ischemia, and hypoxia and lipid peak, which is associated with necrotic cells. The purpose of this study was to retrospectively examine the frequency and significance of lactate and lipid peaks in relation to brain tumor grade.Fifty-five patients diagnosed with neuroepithelial tumors of Grades I (3 cases), II (11 cases), III (15 cases), and IV (26 cases) were enrolled. Biopsies were excluded. Single voxel (TE = 144 ms) point resolved H-MRS spectroscopy sequences were retrospectively analyzed. An inverted doublet peak at 1.3 ppm was defined as lactate, a negative and positive peak was defined as combined lactate and lipid, and a clear upward peak was defined as lipid.Lactate peaks were detected in all grades of brain tumors and were least common in Grade II tumors (9.1%). The frequency of combined lactate-lipid peaks was 0% (Grades I and II), 8.3% (Grade III), and 44% (Grade IV). Grade IV tumors were significantly different to the other grades. There were three cases with a lipid peak. All were glioblastoma.The presence of a lac peak may be useful to largely rule out the Grade II tumors, and allow the subsequent differentiation of Grade I tumors from Grade III or IV tumors by conventional imaging. The presence of a lipid peak may be associated with Grade IV tumors.
A prominent lactate peak as a potential key magnetic resonance spectroscopy (MRS) feature of progressive multifocal leukoencephalopathy (PML): Spectrum pattern observed in three patients
[J].
In vivo 1H MR spectroscopic imaging of aggressive prostate cancer: Can we detect lactate?
[J].
Comparison of 3.0 T proton magnetic resonance spectroscopy short and long echo-time measures of intramyocellular lipids in obese and normal-weight women
[J].
DOI:10.1002/jmri.22226
PMID:20677267
[本文引用: 3]
To compare correlations of intramyocellular lipids (IMCL) measured by short and long echo-time proton magnetic resonance spectroscopy (1H-MRS) with indices of body composition and insulin resistance in obese and normal-weight women.We quantified IMCL of tibialis anterior (TA) and soleus (SOL) muscles in 52 premenopausal women (37 obese and 15 normal weight) using single-voxel 1H-MRS PRESS at 3.0 T with short (30 msec) and long (144 msec) echo times. Statistical analyses were performed to determine correlations of IMCL with body composition as determined by computed tomography (CT) and insulin resistance indices and to compare correlation coefficients from short and long echo-time data. Signal-to-noise ratio (SNR), linewidth, and coefficients of variation (CV) of short and long echo-time spectra were calculated.Short and long echo-time IMCL from TA and SOL significantly correlated with body mass index (BMI) and abdominal fat depots (r = 0.32 to 0.70, P = <0.05), liver density (r = -0.39 to -0.50, P < 0.05), and glucose area under the curve as a measure of insulin resistance (r = 0.47 to 0.49, P < 0.05). There was no significant difference between correlation coefficients of short and long echo-time spectra (P > 0.5). Short echo-time IMCL in both muscles showed significantly higher SNR (P < 0.0001) and lower CVs when compared to long echo-time acquisitions. Linewidth measures were not significantly different between groups.IMCL quantification using short and long echo-time 1H-MRS at 3.0 T is useful to detect differences in muscle lipid content in obese and normal-weight subjects. In addition, IMCL correlates with body composition and markers of insulin resistance in this population with no significant difference in correlations between short and long echo-times. Short echo-time IMCL quantification of TA and SOL muscles at 3.0 T was superior to long echo-time due to better SNR and better reproducibility.2010 Wiley-Liss, Inc.
3D localized lactate detection in muscle tissue using double-quantum filtered 1H MRS with adiabatic refocusing pulses at 7 T
[J].
A localized in vivo detection method for lactate using zero quantum coherence techniques
[J].
Single-shot single-voxel lactate measurements using FOCI-LASER and a multiple-quantum filter
[J].
DOI:10.1002/nbm.3276
PMID:25802214
[本文引用: 1]
Measurement of tissue lactate using (1) H MRS is often confounded by overlap with intense lipid signals at 1.3 ppm. Single-voxel localization using PRESS is also compromised by the large chemical shift displacement between voxels for the 4.1 ppm (-CH) resonance and the 1.3 ppm -CH3 resonance, leading to subvoxels with signals of opposite phase and hence partial signal cancellation. To reduce the chemical shift displacement to negligible proportions, a modified semi-LASER sequence was written ("FOCI-LASER", abbreviated as fLASER) using FOCI pulses to permit high RF bandwidth even with the limited RF amplitude characteristic of clinical MRI scanners. A further modification, MQF-fLASER, includes a selective multiple-quantum filter to detect lactate and reject lipid signals. The sequences were implemented on a Philips 3 T Achieva TX system. In a solution of brain metabolites fLASER lactate signals were 2.7 times those of PRESS. MQF-fLASER lactate was 47% of fLASER (the theoretical maximum is 50%) but still larger than PRESS lactate. In oil, the main 1.3 ppm lipid peak was suppressed to less than 1%. Enhanced suppression was possible using increased gradient durations. The minimum detectable lactate concentration was approximately 0.5 mM. Coherence selection gradients needed to be at the magic angle to avoid large water signals derived from intermolecular multiple-quantum coherences. In pilot patient measurements, lactate peaks were often observed in brain tumours, but not in cervix tumours; lipids were effectively suppressed. In summary, compared with PRESS, the fLASER sequence yields greatly superior sensitivity for direct detection of lactate (and equivalent sensitivity for other metabolites), while the single-voxel single-shot MQF-fLASER sequence surpasses PRESS for lactate detection while eliminating substantial signals from lipids. This sequence will increase the potential for in vivo lactate measurement as a biomarker in targeted anti-cancer treatments as well as in measurements of tissue hypoxia.© 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.
Validating a robust double-quantum-filtered 1H MRS lactate measurement method in high-grade brain tumours
[J].
Improving solid-state NMR dipolar recoupling by optimal control
[J].We present the first solid-state NMR experiments developed using optimal control theory. Taking heteronuclear dipolar recoupling in magic-angle-spinning NMR as an example, it proves possible to significantly improve the efficiency of the experiments while introducing robustness toward instrumental imperfections such as radio frequency inhomogeneity. The improvements are demonstrated by numerical simulations as well as practical experiments on a 13Calpha,15N-labeled powder of glycine. The experiments demonstrate a gain of 53% in the efficiency for 15N to 13Calpha coherence transfer relative to the typically double-cross-polarization experiments.
Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms
[J].In this paper, we introduce optimal control algorithm for the design of pulse sequences in NMR spectroscopy. This methodology is used for designing pulse sequences that maximize the coherence transfer between coupled spins in a given specified time, minimize the relaxation effects in a given coherence transfer step or minimize the time required to produce a given unitary propagator, as desired. The application of these pulse engineering methods to design pulse sequences that are robust to experimentally important parameter variations, such as chemical shift dispersion or radiofrequency (rf) variations due to imperfections such as rf inhomogeneity is also explained.
Distinguishing glutamate and glutamine in in vivo 1H MRS based on nuclear spin singlet order filtering
[J].
Selectively probing the magnetic resonance signals of γ-aminobutyric acid in human brains in vivo
[J].
Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis
[J].
Optimal control in NMR spectroscopy: Numerical implementation in SIMPSON
[J].
DOI:10.1016/j.jmr.2008.11.020
PMID:19119034
[本文引用: 1]
We present the implementation of optimal control into the open source simulation package SIMPSON for development and optimization of nuclear magnetic resonance experiments for a wide range of applications, including liquid- and solid-state NMR, magnetic resonance imaging, quantum computation, and combinations between NMR and other spectroscopies. Optimal control enables efficient optimization of NMR experiments in terms of amplitudes, phases, offsets etc. for hundreds-to-thousands of pulses to fully exploit the experimentally available high degree of freedom in pulse sequences to combat variations/limitations in experimental or spin system parameters or design experiments with specific properties typically not covered as easily by standard design procedures. This facilitates straightforward optimization of experiments under consideration of rf and static field inhomogeneities, limitations in available or desired rf field strengths (e.g., for reduction of sample heating), spread in resonance offsets or coupling parameters, variations in spin systems etc. to meet the actual experimental conditions as close as possible. The paper provides a brief account on the relevant theory and in particular the computational interface relevant for optimization of state-to-state transfer (on the density operator level) and the effective Hamiltonian on the level of propagators along with several representative examples within liquid- and solid-state NMR spectroscopy.
Analytical unitary bounds on quantum dynamics: Design of optimum NMR experiments in two-spin-1/2 systems
[J].
Preparing nuclear spin singlet state in a three-spin system and its application in 2D spectrum
[J].
三自旋体系核自旋单重态的制备与单重态二维谱的实现
[J].
DOI:10.11938/cjmr20212910
[本文引用: 1]
核自旋单重态是一种特殊的自旋状态,其寿命远长于相应自旋的横向和纵向弛豫时间,能够被用于研究分子的慢扩散、慢运动、特征信号选择等过程.目前单重态的研究主要集中于孤立的两自旋体系.而本文以N-乙酰基天冬氨酸(NAA)分子中由亚甲基和次甲基的三个氢原子核构成的三自旋体系为研究对象,将亚甲基中的两个氢核制备成单重态.利用优化控制和数值计算方法,分别设计了包含和不包含次甲基氢核耦合的单重态制备脉冲,结果发现,不考虑次甲基氢耦合设计的优化脉冲,其在实际三自旋体系中的单重态制备效率会显著下降.另外,我们以单重态为起点,实现了针对次甲基和亚甲基的信号选择COSY谱和NOESY谱,结果表明基于单重态的二维谱能够有效避免谱峰重叠现象,提高谱图分辨率,并有助于提高分子结构解析的准确性.
Preparation efficiency of singlet states in multi-spin systems with different coupling configurations
[J].
不同耦合构型多自旋体系单重态制备效率研究
[J].
DOI:10.11938/cjmr20233063
[本文引用: 1]
核自旋单重态是一种特殊的量子态,其存在寿命能远长于纵向弛豫时间(T<sub>1</sub>),能够被用于研究分子之间的慢扩散和慢运动等动力学过程.单重态的制备是其能成功应用的关键.目前文献中报道了多种制备单重态的方法,这些方法主要适用于孤立的两自旋体系,当单重态所涉及的核自旋受到其它自旋的耦合作用时,单重态的制备效率往往会降低.本文以三自旋体系为例,研究了不同耦合构型下单重态的制备效率受非单重态自旋耦合的影响,模拟结果表明当单重态自旋由弱耦合逐渐变为强耦合时,单重态的制备效率会在单重态自旋与非单重态自旋的耦合呈现对称性时保持一定的稳定性,此特性能够为复杂体系中选择合适的自旋制备单重态提供参考.我们利用N-乙酰-L-天门冬氨酸(NAA)分子的三个质子组成的自旋体系实验验证了以上结论,通过调节NAA分子的酸碱度,所选的三自旋体系能从弱耦合向强耦合转变,实验结果表明:当三自旋中单重态自旋处于强耦合时,单重态的制备效率明显高于弱耦合时的效率.
Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues
[J].
/
〈 |
|
〉 |
