基于物理模型的ISTAVS-Net多线圈MRI图像重建
|
黄敏, 朱俊琳, 考宇辰, 周到, 唐奇伶
|
Multi-Coil MRI Image Reconstruction Based on ISTAVS-Net of Physical Model
|
HUANG Min, ZHU Junlin, KAO Yuchen, ZHOU Dao, TANG Qiling
|
|
表1 两种传统算法(L1-ESPIRiT、ISTA)和4种深度学习网络(U-Net、ISTA-Net+、VS-Net、ISTAVS-Net)在冠状位数据重建结果中的评价指标平均值
|
Table 1 Average evaluation metrics of two traditional algorithms (L1-ESPIRiT, ISTA) and four deep learning networks (U-Net, ISTA-Net+, VS-Net, ISTAVS-Net) in coronary data reconstruction results
|
|
评价指标 | AF | L1-ESPIRiT | ISTA | U-Net | ISTA-Net+ | VS-Net | ISTAVS-Net | PSNR/dB | 2 | 32.671 | 34.051 | 40.926 | 40.879 | 40.675 | 42.021 | | 4 | 28.868 | 30.390 | 36.911 | 36.281 | 36.478 | 37.724 | | 6 | 27.234 | 29.567 | 34.052 | 33.808 | 33.932 | 34.609 | | 8 | 26.976 | 28.446 | 33.287 | 32.713 | 33.184 | 33.341 | SSIM | 2 | 0.8802 | 0.9301 | 0.9573 | 0.9470 | 0.9547 | 0.9604 | | 4 | 0.8275 | 0.8680 | 0.9257 | 0.9128 | 0.9208 | 0.9311 | | 6 | 0.7608 | 0.8424 | 0.8950 | 0.8807 | 0.8936 | 0.9002 | | 8 | 0.7020 | 0.8205 | 0.8825 | 0.8679 | 0.8833 | 0.8839 | NMSE | 2 | 0.0205 | 0.0160 | 0.0107 | 0.0113 | 0.0109 | 0.0105 | 4 | 0.0384 | 0.0362 | 0.0189 | 0.0193 | 0.0190 | 0.0183 | 6 | 0.0478 | 0.0438 | 0.0277 | 0.0280 | 0.0275 | 0.0271 | 8 | 0.0578 | 0.0567 | 0.0347 | 0.0350 | 0.0316 | 0.0304 |
|
|
|