Multi-domain regularized[78] | 2016 | Caffe | 42894张图像 | 0.890 | - | - | | - | - | - |
CNN[71] | 2016 | MATLAB | 51例临床数据 | 0.945 | - | - | | 1.2648 | - | - |
Deep generative models[130] | 2017 | TensorFlow | 566例临床数据 | 0.936 | | | | | | |
Anatomically CNN[68] | 2017 | - | UK Digital Heart、 CETUS、ACDC | 0.939 | - | 0.811 | | 7.89 | - | 7.12 |
Shape-guided deformable model driven by FCN[108] | 2018 | Keras | 69例临床数据 | 0.86 | - | - | | - | - | - |
Recurrent FCN and optical flow[76] | 2018 | TensorFlow | 556例临床病例 | 0.927 | - | - | | - | - | - |
Multi-structure segmentation[75] | 2018 | - | 500例临床数据 | 0.868 | - | - | | 14.3 | - | - |
VoxelAtlasGAN[118] | 2018 | PyTorch | 60例临床病例 | 0.953 | - | - | | 7.26 | - | - |
Automatic biplane[77] | 2019 | TensorFlow | 427例临床病例 | 0.92 | - | - | | - | - | - |
CNN with the active shape model[110] | 2019 | MATLAB | 30例临床数据 | 0.919 | - | - | | 6.38 | - | - |
Time-series information[70] | 2020 | TensorFlow | 211例临床病例 | 0.695 | - | - | | - | - | - |
Beat-to-beat assessment[117] | 2020 | PyTorch | EchoNet-Dynamic | 0.92 | - | - | | - | - | - |
DPS-Net[114] | 2020 | PyTorch | 10858例临床数据 | 0.935 | - | - | | 5.51 | - | - |
Deep pyramid local[73] | 2021 | PyTorch | CAMUS | 0.962 | - | - | | 4.6 | - | - |
3D ultrasound evaluation[72] | 2022 | TensorFlow | 26例临床数据 | 0.82 | - | - | | 6.78 | - | - |
Contrastive pretraining[111] | 2022 | - | CAMUS | 0.9252 | - | - | | - | - | - |
Label-free segmentation[112] | 2022 | TensorFlow、 Keras | 18873例 | 0.83 | - | - | | - | - | - |
Lightweight network[74] | 2022 | MATLAB | 2262例 | 0.902 | - | - | | - | - | - |
GUDU[69] | 2023 | - | CAMUS | 0.946 | - | - | | 4.7 | - | - |
Knowledge fusion[113] | 2023 | - | EchoNet-Dynamic、 150例临床数据 | 0.908 | - | - | | 6.56 | - | - |