CNN[93] | 2016 | - | 60例临床病例 | 0.85 | - | - | | - | - | - |
Combining faster R-CNN and U-net[54] | 2018 | PyTorch | MM-WHS2017 | 0.879 | 0.902 | 0.822 | | - | - | - |
CNN[102] | 2018 | TensorFlow | 11例临床病例 | 0.878 | 0.829 | - | | - | - | - |
Hybrid loss guided CNN[65] | 2018 | TensorFlow | MM-WHS2017 | 0.8680 | 0.7143 | 0.665 | | - | - | - |
CNN and anatomical label configurations[94] | 2018 | Caffe | MM-WHS2017 | 0.918 | 0.909 | 0.881 | | - | - | - |
3D deeply-supervised U-Net[55] | 2018 | - | MM-WHS2017 | 0.893 | 0.810 | 0.837 | | - | - | - |
DL and shape context[59] | 2018 | Keras | MM-WHS2017 | 0.935 | 0.825 | 0.879 | | - | - | - |
Multi-planar deep segmentation networks[99] | 2018 | TensorFlow | MM-WHS2017 | 0.904 | 0.883 | 0.851 | | - | - | - |
3D CNN[103] | 2018 | TensorFlow | MM-WHS2017 | 0.923 | 0.857 | 0.856 | | - | - | - |
Two-stage 3D U-net[56] | 2018 | TensorFlow | MM-WHS2017 | 0.800 | 0.786 | 0.729 | | - | - | - |
Multi-depth fusion network[58] | 2019 | TensorFlow | MICCAI 2017全心 CT数据集 | 0.944 | 0.895 | 0.889 | | - | - | - |
3D deeply supervised attention U-net[57] | 2020 | MATLAB | 100例临床病例 | 0.916 | - | - | | 6.840 | - | - |
DL[66] | 2020 | - | 1100例临床数据 | - | - | 0.883 | | - | - | 13.4 |
Unet-GAN[98] | 2021 | PyTorch | MM-WHS2017 | 整体平均0.889 | | | | |
Multiple GAN guided by Self-attention mechanism[97] | 2021 | - | MM-WHS2017 | 0.814 | - | 0.669 | | - | - | - |
AttU_Net_conv1_5Mffp[62] | 2021 | PyTorch | MM-WHS2017 | 0.907 | 0.842 | 0.906 | | - | - | - |
PC-Unet[60] | 2021 | - | 20例临床数据 | 0.885 | - | - | | 7.05 | - | - |
Computer graphics imaging and DL[129] | 2022 | - | 130例临床数据 | - | 0.81~0.95 | - | | - | - | - |
DRLSE[25] | 2022 | - | 5例临床数据 | 0.9253 | - | - | | 7.874 | - | - |
4D contrast-enhanced[104] | 2022 | PyTorch | 1509例临床数据 | 整体平均0.8 | | - | - | - |
MRDFF[95] | 2022 | - | MM-WHS2017 | 0.899 | 0.823 | - | | - | - | - |
Transnunet[64] | 2022 | - | MM-WHS2017 | 0.921 | - | - | | - | - | - |
Self-attention mechanism[45] | 2023 | TensorFlow | 96例临床病例 | - | - | 0.9202 | | - | - | - |