融合双解码和全局注意力上采样模块的胰腺囊性肿瘤分割网络
|
戴俊龙, 何聪, 武杰, 边云
|
Pancreatic Cystic Neoplasms Segmentation Network Combining Dual Decoding and Global Attention Upsampling Modules
|
Dai Junlong, He Cong, Wu Jie, Bian Yun
|
|
表2 不同文献中的模型和本文模型的Dice相似系数对比
|
Table 2 Comparison of Dice similarity coefficients between the model in different literature and the model in this paper
|
|
模型 | 数据来源 | 数据类型 | Dice/% | VA-3DUNet[21] | NIH | 3D(CT) | 86.19±9.03 | Attention U-Net[9] | CT-150 | 3D(CT) | 84.00±8.70 | Cascaded multitask 3-D fully convolutional networks[11] | 82(CT) | 3D(CT) | 85.9±5.10 | HSSN[12] | MRI | 3D(MRI) | 85.7±2.3 | PanKNet[13] | Pancreas-MRI | 3D(MRI) | 77.46±8.62 | ConResNet[22] | NIH | 3D(CT) | 86.06 | PNet-MSA[8] | MRI-79 | 2D(MRI) | 80.7±7.40 | Spatial aggregation of holistically-nested convolutional neural networks[23] | NIH | 2D(CT) | 81.27±6.27 | deep convolutional LSTM neural network[24] | MRI-79 | 2D(MRI) | 80.5±6.70 | RSTN[25] | NIH | 2D(CT) | 84.50±4.97 | TransUnet[26] | MICCAI 2015 | 2D(CT) | 73.96 | DGANet(本文模型) | 长海医院 | 2D(MRI) | 86.28±2.77 |
|
|
|