波谱学杂志, 2024, 41(1): 87-98 doi: 10.11938/cjmr20233060

研究论文

基于小型化原子磁力计的零场NMR波谱仪搭建与测试

付方跃1,2, 郭清乾2,3, 冯晓宇2,3, 徐佳玉1,2, 姚泽坤1,2, 胡涛2,3,4, 杨晓冬,1,2,#, 常严,1,2,3,*

1.长春理工大学 电子信息工程学院,吉林 长春 130022

2.中国科学院苏州生物医学工程技术研究所,江苏 苏州 215163

3.季华实验室,广东 佛山 528200

4.济南国科医工科技发展有限公司,山东 济南 250101

Development and Validation of Zero-field NMR Spectrometer Based on Compact Atomic Magnetometer

FU Fangyue1,2, GUO Qingqian2,3, FENG Xiaoyu2,3, XU Jiayu1,2, YAO Zekun1,2, HU Tao2,3,4, YANG Xiaodong,1,2,#, CHANG Yan,1,2,3,*

1. School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China

2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China

3. Jihua Laboratory, Foshan 528200, China

4. Jinan Guoke Medical Technology Development Co., Ltd, Jinan 250101, China

通讯作者: # Tel: 18900616030, E-mail:xiaodong.yang@sibet.ac.cn;Tel: 15895428081, E-mail:changy@sibet.ac.cn.

收稿日期: 2023-03-26   网络出版日期: 2023-06-05

基金资助: 中科院科研装备研制项目(YJKYYQ20210051); 苏州市基础研究试点项目(SJC2021024); 山东省自然科学基金青年项目(ZR2022QF098)

Corresponding authors: # Tel: 18900616030, E-mail:xiaodong.yang@sibet.ac.cn;Tel: 15895428081, E-mail:changy@sibet.ac.cn.

Received: 2023-03-26   Online: 2023-06-05

摘要

常规高场NMR波谱仪依托超导技术,其体积大、维护成本高,且存在样本磁化率不均匀导致的谱线展宽现象,零场或近零场NMR技术则可实现有效互补.本文自主搭建了一套基于小型原子磁力计的可移动零场NMR波谱仪,采用以多功能采集卡(National Instruments PCIe-6353)为核心的集成控制系统,仪器主磁场强度小于1 nT,可实现高分辨率的J-耦合谱采集.为实现对自旋体系的有效操控,利用样品绝热初态的单脉冲激发实现对三轴脉冲线圈的精确标定.在此基础上,使用改进的组合脉冲序列实现了在13C-1H异核体系下的单自旋选择性操控,验证了零场NMR波谱仪的有效性.

关键词: 零场核磁共振; J-耦合谱; 原子磁力计; 单自旋操控

Abstract

Conventional high-field nuclear magnetic resonance (NMR) spectrometer necessitates advanced superconducting technology, which usually involves a magnet of large volume and high maintenance cost. Moreover, strong magnet often has severe magnetic field inhomogeneity, leading to NMR line broadening. Zero- to ultralow-field (ZULF) NMR emerged as a complementary approach to traditional high-field NMR techniques. In this paper, a portable zero-field NMR spectrometer based on a compact atomic magnetometer was developed, which adopted an integrated control system based on a multi-function data acquisition card (National Instruments PCIe-6353). The spectrometer is of a main magnetic field strength less than 1 nT and enables achieving high-resolution J-spectrum under zero-field environment. Specifically, a series of single pulse excitation experiments for the initial adiabatic state was carried out to calibrate the triaxial magnetic field coils. Then a modified composite pulse sequence was developed to further validate the performance of zero-field NMR spectrometer by single-spin control experiments for the 13C-1H spin system.

Keywords: zero-field NMR; J-spectroscopy; atomic magnetometer; single-spin control

PDF (878KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

付方跃, 郭清乾, 冯晓宇, 徐佳玉, 姚泽坤, 胡涛, 杨晓冬, 常严. 基于小型化原子磁力计的零场NMR波谱仪搭建与测试[J]. 波谱学杂志, 2024, 41(1): 87-98 doi:10.11938/cjmr20233060

FU Fangyue. Development and Validation of Zero-field NMR Spectrometer Based on Compact Atomic Magnetometer[J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 87-98 doi:10.11938/cjmr20233060

引言

核磁共振(NMR)是一种非侵入性的分子结构解析技术,在复杂混合物的分析方面具有方便快捷、波谱分辨率高及重复性好等优势[1,2].在实际应用方面,常规高场NMR具有极高的分辨率及信噪比,但由于超导磁体体积较大,维护成本高,导致其应用场景受限;同时强磁场引起的磁化率不均会导致谱线展宽,继而造成波谱分辨率的损失[3].零场-近零场(Zero- to Ultralow-Field, ZULF)NMR作为高场NMR的补充,可为物质分析提供一种全新的波谱学视角[4]. 在ZULF条件下,外部主磁场环境被下调至零场(<1 nT)范围,化学位移效应几乎可以忽略[5],核自旋之间的J-耦合作用成为主导,在ZULF条件下测量得到的NMR波谱即为J-耦合谱. 2011年,Ledbetter团队首次获得了近零场NMR的裂分谱,并做出理论解释[6];2013年,加州大学伯克利分校的Pines团队实现了对于一系列苯衍生物分子的高分辨率J-耦合谱采集,线宽达到11 mHz[7],表明零场-近零场 NMR的波谱分辨率极高,能够很好的克服不均匀磁场对谱线的影响.

ZULF NMR具备的上述独特优势,使其在基础物理、量子控制、分析化学等领域得到了广泛应用.2013年,中国科学院精密测量院(武汉物理与数学研究所)的周欣研究组通过自主研发的Cs原子磁力计,实现了超低场(47 nT)下的自来水NMR信号采集以及对比剂的弛豫时间测定[8].2017年,中国科学技术大学彭新华研究组基于无自旋交换弛豫(SERF)效应搭建了一套高灵敏度原子磁力计,并在此基础上首次将单气室梯度式原子梯度磁力计应用在超低场探测中[9].基于零场NMR,该团队陆续开展了一系列的量子控制理论与实验研究,典型成果包括利用复合脉冲技术实现异核体系的任意单自旋独立操控和双自旋的可控量子非门(CNOT)操控[10,11],利用优化控制技术实现自旋体系的量子控制[12,13],利用强相互作用核自旋体系的J-耦合谱实现多参数量子计量及惯性测量[14].2019年,Barskiy等利用15N标记铵和超极化13C标记丙酮酸研究证实了化学交换对零场-超低场J-耦合谱的影响[15].2021年,Put等基于商用原子磁力计搭建了一套零场NMR波谱仪,实现了甲酸、甘氨酸等生物小分子的零场-超低场谱图采集和解释[16].借助于新型超高灵敏磁探测传感技术如原子磁力计[17-19]、超极化技术如仲氢诱导核极化[20,21],零场NMR可有效应用于生物小分子如代谢物的识别定量[16]、极低场弛豫色散研究[22]、原位化学反应监测[23]、生物磁探测[24,25]以及极弱静磁场的间接测量[26]等.

上述大多数ZULF NMR研究平台虽然探测灵敏度很高,但设备整体体积仍然较大,无法满足潜在的便携式可移动的场景需求. 为此,本文自主搭建了一套小型化可移动零场NMR波谱仪,并以NI(National Instruments,美国国家仪器有限公司)多功能采集卡核心控制单元为基础,实现了对于进样、预极化、控制时序发生、调控脉冲施加及信号采集等全过程的自动化控制.在完成对脉冲线圈的标定测试的基础上,通过改进的组合脉冲实现了13C-1H异核自旋体系的选择性操控.

1 零场NMR波谱仪搭建

本文开发的零场NMR波谱仪样机框架结构及实物图如图 1所示,主要由磁场屏蔽装置、预极化磁体、小型原子磁力计(Qu-spin公司第二代QZFM-Z2.0,噪声谱密度约为15 fT/Hz1/2)、引导线圈以及脉冲线圈组件构成.其中,磁场屏蔽装置包括磁屏蔽筒及筒内三轴匀场线圈,二者共同构建零磁场环境,屏蔽筒使用过程中应注意避免与永磁性材料接触,若因接触导致磁化问题需利用消磁器进行消磁处理.此外,由于零场NMR信号非常微弱,通常需采用预极化[2](或超极化[27])手段增强样品自旋体系的磁矩,本文采用的是0.5 T Halbach预极化磁体,固定于屏蔽筒上方.在预极化完成后,样本经过自由落体转移至检测区域,此时即可利用原子磁力计实现高信噪比的零场NMR信号采集.磁力计有两个正交方向的测量敏感轴,本文选择单轴测量模式,其测量方向与图1脉冲线圈组件的y轴方向一致.为保证信号探测效率,样品管应与磁力计探头尽量紧贴.在样品从预极化场到零磁场转移过程中,为减少杂散磁场对样品自旋取向的干扰,在竖直方向(y轴)利用螺线管线圈提供引导场,将自旋体系转向y方向,通过对引导场的准确控制,可实现样品自旋体系的瞬态或绝热态初态制备.对于瞬态初态,样品到达零场检测区域后仍然保持高场本征态,无需施加脉冲即可采集到J-耦合谱.而对于绝热初态,样品到达检测区域后则保持零场本征态,须施加脉冲激发才可以得到零场NMR信号[28].脉冲施加通过脉冲线圈组件实现,其由三组正交的亥姆霍兹线圈组成,可提供信号探测区域内的均匀三维正交激励磁场,进而可以实现空间任意方向的自旋体系调控.

图1

图1   零场NMR波谱仪设备示意图及实物图

Fig. 1   Schematic diagram and photo of the developed zero-field NMR spectrometer


在施加脉冲时,采集卡多路模拟输出(AO)输出后经功率放大器,需要考虑二者连通后的电子噪声干扰问题,本文使用如图2(a)所示的滤波电路消除该电子噪声,其中C1用于消除高频噪声,R为分压电阻(1 Ω),保护二极管不被击穿,D1、D2双向二极管利用其截止电压(0.56 V)进行滤波.如图2(b)所示,在实际测试过程中发现C1电容值的大小会对脉冲波形的上升沿响应时间及脉冲波形产生影响,对比测试多组电容值作用的脉冲波形及噪声水平后,选取了2.2 µF作为C1的电容值.另外为确保零场NMR信号采集时磁力计不受筒内各类磁场脉冲施加的干扰,本文通过施加模拟信号进行测试,结果证明,适当的引导场(小于0.3×10-4 T)及脉冲场(小于188 µT)的施加不会对磁力计采集结果造成干扰.

图2

图2   脉冲输出的滤波电路原理图及其电容值选择测试. (a)滤波电路原理图;(b)滤波电路电容值选择测试结果

Fig. 2   Schematic diagram of filter circuit for pulse application and capacitance value selection test. (a) Schematic diagram of filter circuit; (b) Capacitance value selection test of filter circuit


本文搭建的零场NMR波谱仪主要特点在于可移动及小型化集成.样机设备安装在可移动的推车上,磁力计的固定封装使得仪器移动并不会对系统性能产生影响.同时,由于采用小型化控制方案,无需额外使用任意波发生器及多路继电器等设备,降低了对整体装置的空间要求.

对于绝热初态下的脉冲调控实验,实验开始时,样品通过真空泵被吸引到极化区域,经过20 s预极化场(0.5 T)作用后,去除真空泵的吸力,样品管自由落体,在此期间(约250 ms)缓慢关断引导场(0.8 µT);为减小螺线管线圈底部杂散磁场对样品的影响,由y轴脉冲线圈额外提供辅助引导场(与引导场强度相同)保证自旋磁矩取向有序;当样品管平稳落在探测区域后施加调控脉冲,其后等待100 ms使磁力计恢复工作状态,进行NMR信号采集,采集时间为5 s,采样率为10 kHz;最后对得到的信号进行基线校正、去均值偏置以及滤波等操作后,再经过快速傅里叶变换,即可得到样品的J-耦合谱.

本文开发的零场NMR波谱仪的控制系统包括时序控制、调控脉冲设计与施加以及波谱信号的实时采集与分析等功能.如图3所示,整体控制方案基于多功能采集卡(National Instruments PCIe-6353)实现,其与控制计算机连接,承担控制时序发生、脉冲波形输出以及数据采集任务.具体地,在时序控制方面,采集卡计数器输出(CTRO)端口产生多路逻辑门电路(TTL)信号,实现对整体实验流程的精确控制;在脉冲波形产生方面,由AO实现三维调控脉冲输出,可根据实验设计进行任意波形输出,为未来开展优化脉冲的应用研究提供支撑;在信号采集方面,通过采集卡的模拟输入(AI)端口完成零场NMR信号采集,再经过傅里叶变换后即可得到J-耦合谱.

图3

图3   零场NMR波谱仪控制系统结构示意图

Fig. 3   Schematic diagram of the control system of zero-filed NMR spectrometer


上述零场NMR波谱仪控制系统的主要优点在于:(1)控制集成化的实现在空间上实现了节约,为小型化零场NMR波谱仪的搭建提供基础;(2)整体基于NI控制实现,统一使用NI设备的内部时钟,更有利于零场NMR实验要求的精准时序控制.由于各部分通信都在NI设备内部进行,也减少了因使用信号发生器、数字延时发生器等其他商用仪器而导致的机柜体积庞大以及可能因接线引入的电子噪声等.

零场NMR实验控制共需4路时间控制序列,如图4所示,分别为预极化控制时序、引导场控制时序、脉冲场控制时序以及数据采集控制时序.其中,预极化控制时序用于对整体实验和其他的控制时序的触发,实验重复次数可根据需求自由设定.在其上升沿阶段,真空泵电磁阀开启并将样品吸引到预极化区域,同时触发引导场控制时序,而在其下降沿阶段,触发脉冲场控制时序及数据采集控制时序,所有触发过程均在采集卡内部进行.具体实验步骤为:(1)触发预极化控制时序,真空泵电磁阀开启,吸引样品到达预极化区域开始极化;(2)预极化控制时序的上升沿触发启动引导场控制时序,其高电平期即为引导场的施加时间,注意引导场的关断应在预极化结束后;(3)预极化控制时序的下降沿出现时,触发脉冲场控制时序及数据采集控制时序;(4)调控脉冲的持续时间与脉冲场控制时序的高电平时间相同,调控脉冲可根据需要在三维空间方向进行组合施加;(5)脉冲作用后约100 ms,进行数据采集,之后再对其进行波谱分析,即可得到脉冲调控下的零场J-耦合谱.

图4

图4   零场NMR实验脉冲调控实验控制时序图

Fig. 4   Time sequence for pulsed field excitation of zero-field NMR experiments


2 脉冲线圈标定

零场NMR的调控脉冲是通过采集卡AO端口的电压输出,经功率放大器(ATA-101)及双向二极管RC电路施加到脉冲线圈的.因此,为实现自旋体系的精确操控,需准确标定调控脉冲控制量与实际脉冲磁场强度间的定量关系,可利用磁通门进行标定,然而受到磁通门测量精度及探头位置的影响,通常很难实现脉冲磁场的精确测量[29].对此,本文在磁通门初步标定的基础上,进一步利用标准样品的J-耦合谱间接实现脉冲线圈的精确标定.

本文的零场NMR波谱仪的原子磁力计测量方向为y轴,根据理论计算,对于绝热初态,在x轴或z轴脉冲线圈施加矩形脉冲,测量到的信号表现形式相同[3]

$M_{y} \propto \cos \left(B_{x / z} \tau \gamma_{\mathrm{H}}\right)-\cos \left(B_{x / z} \tau \gamma_{\mathrm{C}}\right)$

而在y轴脉冲线圈施加矩形脉冲时,其测量的信号强度形式为:

$M_{y} \propto \sin \left[\left(\gamma_{\mathrm{H}}-\gamma_{\mathrm{C}}\right) B_{y} \tau\right]$

其中,$M_{y}$表示y轴方向测量到的信号强度,$B_{x / y / z}$表示施加在对应轴方向上的脉冲磁场强度,$\tau $则表示脉冲作用时间,$\gamma_{\mathrm{H}}, \gamma_{\mathrm{C}}$分别表示1H及13C的旋磁比,$B_{x / y / z} \tau \gamma_{\mathrm{H} / \mathrm{C}}$表示对应的核自旋翻转角,由此可知脉冲作用时间及脉冲强度共同影响着核自旋翻转角,在本文的脉冲调控实验中,脉冲施加需经历功放及二极管电路等,考虑到脉冲作用的稳定性,选择固定脉冲幅值,调整脉冲作用时间的方式来改变核自旋翻转角,相比于脉冲幅值变化,减少了实验控制量的不确定性.

考虑到屏蔽筒内的剩磁可能会随着实验次数的增加而累积,继而影响到实验的准确性,在实验过程中使用消磁器进行消磁,并通过对每一组实验进行多次(5次)平均来提高信噪比(SNR可达15)及减少随机误差.另外,为确保实验的可重复性,在每组实验开始前,利用商用磁力计对磁力计工作区域进行剩磁补偿,确保实验开始前处于零场环境,同时保证每组实验中磁力计灵敏度水平相当.

本文以13C标记的甲酸(H-13COOH)作为样品,选用5 mm标准样品管,样品含量约为250 µL.甲酸分子的零场NMR信号只有一个峰,该峰的位置对应于1H和13C的J-耦合常数(约为222.2 Hz).首先将样品制备到绝热初态,然后分别在x轴、y轴、z轴方向施加一系列固定脉冲幅值(0.4 V)的矩形脉冲,并经功率放大器进行10倍放大,其脉冲作用时间等间隔选取,后采集对应的J-耦合谱(半高宽-FWHM约为0.5 Hz),通过对谱峰强度的测定,即可得到矩形脉冲作用时间(AO输出脉冲时间)与零场NMR信号强度之间的对应关系.对上述J-耦合谱峰强度进行测定时,对于x轴及z轴标定实验,使用J-耦合谱的实部峰值,而对于y轴脉冲标定,使用J-耦合谱的虚部峰值.具体地,对得到的零场NMR信号进行快速傅里叶变换,得到对应的实部及虚部峰值,将多次重复实验的数据进行平均,结果作为脉冲线圈标定实验结果的纵坐标取值,并根据(1)、(2)式分别对上述三组测量数据进行拟合,结果如图5所示.

图5

图5   甲酸(H-13COOH)零场NMR信号振幅与直流脉冲幅值之间的标定关系. (a) x轴脉冲标定结果;(b) y轴脉冲标定结果;(c) z轴脉冲标定结果

Fig. 5   Zero-field NMR signal amplitude of 13C-formic acid versus amplitude of a direct current excitation pulse. (a) x-axis pulse calibration result; (b) y-axis pulse calibration results; (c) z-axis pulse calibration results


图5中可以看出,x轴和z轴的脉冲标定结果具有相似性,与理论公式(1)式的预测相吻合,表现为两个余弦三角函数的叠加形式.对于y轴标定结果,可以看出为单个正弦三角函数形式,符合基本理论预期.与此同时,由于实验过程中设备稳定性及环境噪声等影响因素,导致在某些脉冲作用位置,实际信号强度与拟合结果之间存在偏差,具体原因可能包括:首先实验过程中功放电子噪声强度可能会发生轻微变化,引入脉冲之外的微弱磁场而影响核磁共振信号的采集,另外,样品输运装置缺乏稳定性导致在样品下落过程中可能会发生旋转及轻微震动等,继而会对后续采集到的数据产生影响.对于功放电路的输出噪声问题,可使用继电器对整体脉冲施加线路进行通断,保证在脉冲施加之外的时间内整体脉冲线路处于断开状态,避免引入其他干扰影响信号采集.

上述实验均通过磁力计的单轴模式采集,主要是考虑Qu-spin磁力计的单轴测量模式灵敏度略优于双轴测量模式,因为相较于单轴补偿时的单一方向调制磁场作用,在进行双轴补偿时磁力计内部补偿线圈产生的两个方向的调制磁场可能会互相干扰,使得双轴测量模式下磁力计工作的稳定性及灵敏度有所下降.但双轴测量模式对于一些需要更多磁场方向信息的问题(如脑磁信号探测[25])的研究具有重要应用价值.

以上,我们得到了一种对脉冲强度的标定方案,确定了脉冲作用时间与实际脉冲磁场强度之间的关系,为对核自旋体系的精准操控提供了基础.

3 自旋选择性操控实验

与常规NMR不同,零场NMR实验的调控脉冲一般为直流脉冲,此时样品中所有的核自旋都会被同时激发.以13C-1H体系为例,为实现某个特定核自旋的操控,可以通过组合脉冲方式实现[10,11],其中组合脉冲施加方案如图6(a)所示.具体地,由于1H与13C二者之间的旋磁比之比约等于4,即当脉冲作用使1H自旋$4 \pi$角度时,13C自旋接近$\pi$角度,相当于1H自旋相位保持不变,所以可据此来进行单自旋体系脉冲序列的设计.

图6

图6   单自旋操控脉冲序列. (a) 1H单自旋操控脉冲序列;(b) 13C单自旋操控脉冲序列[10,11]

Fig. 6   The single-spin independent rotations pulse sequence. (a) The pulse sequence for 1H; (b) The pulse sequence for 13C[10,11]


13C 自旋选择操控实验为例,在脉冲作用前,将样品制备到绝热初态,在x轴及z轴上施加如图6(b)所示组合脉冲,保证在组合脉冲作用后,1H自旋的累积相位为零,而13C自旋翻转θ角度.具体地,首先在x轴线圈施加矩形脉冲,使13C顺时针旋转θ/2,此时1H自旋翻转2θ,接下来在z轴线圈施加脉冲使13C绕着z轴翻转$\pi$角度,此时13C翻转到-y方向,然后再次在x轴施加与第一个脉冲强度相同,方向相反的矩形脉冲,使13C逆时针旋转θ/2,最后施加脉冲使13C绕z轴旋转$\pi$角度,至此,13C自旋累积翻转角度为θ,而1H自旋的累积相位为零.相应的,对于1H自旋选择性操控,采用图6(a)所示方案进行,最后使13C 自旋的累积相位为零.得到的实验结果如图7所示.

图7

图7   单自旋操控脉冲序列作用下单自旋选择性操控实验结果. (a) 1H单自旋操控信号;(b) 13C单自旋操控信号

Fig. 7   The results of heteronuclear single-spin independent rotations by pulse sequence. (a) The signal of individual nuclear spin rotation for 1H; (b) The signal of individual nuclear spin rotation for 13C


对于1H自旋的选择性操控实验,其信号理论上表现为$1-\cos \left(B_{x} \tau \gamma_{\mathrm{H}}\right)$,而对于13C单一核自旋的选择性操控,其信号变化形式理论上表现为$\cos \left(B_{x} \tau \gamma_{\mathrm{C}}\right)-1$.由于1H与13C之间的旋磁比满足$\gamma_{\mathrm{H}} / \gamma_{\mathrm{C}} \approx 4$,结合上述理论三角函数关系,可知二者的选择性实验的信号变化规律呈现4倍周期关系.从图7的实验结果可以看出,1H自旋操控信号变化周期数是13C单核自旋信号的4倍,符合理论分析,但同时也可看出实验结果与理论拟合结果之间存在一定的偏差,可能的原因除样品输运装置及功放线路电子噪声问题外,$\pi $脉冲作用点的选取以及组合脉冲方式的设计都是影响实验结果的重要因素,另外磁场的不均匀性也会影响脉冲的作用精度.

为了进一步降低磁场不均匀性对$\pi $脉冲的影响,提高前述组合脉冲序列中$\pi $脉冲的操控精度,本文利用组合的$\pi $脉冲取代常规的单个矩形$\pi $脉冲[30,31],结合13C-1H体系中1H与13C旋磁比之间的倍数关系,对应用于自旋选择性操控的组合脉冲序列进行优化,即利用$(\pi / 2)_{z}-(\pi)_{x}-(\pi / 2)_{z}$对$(\pi)_{z}$进行整体替换,改进的脉冲序列设计如图8所示,其中阴影区域即为取代$(\pi)_{z}$的组合$\pi$脉冲,三部分脉冲的幅值相同,脉冲作用时间之比为1:2:1.本文提出的改进型脉冲序列可在利用组合脉冲提高单脉冲作用精度的同时,满足选择性操控脉冲设计所需的1H与13C自旋的相位变化.

图8

图8   改进型单自旋操控脉冲序列. (a) 1H单自旋操控脉冲序列;(b) 13C单自旋操控脉冲序列

Fig. 8   The modified single-spin independent rotations pulse sequence. (a) The pulse sequence for 1H; (b) The pulse sequence for 13C


这种通过特定组合脉冲的设计近似实现单自旋选择性操控的实验,关键在于找到使1H旋转了$4 \pi$角度(13C自旋$\pi$角度)对应的脉冲作用时间点,其可通过前文脉冲标定实验结果进行选取.具体地,根据(1)式及1H与13C之间的旋磁比关系($\gamma_{\mathrm{H}} / \gamma_{\mathrm{C}} \approx 4$)可知,z轴脉冲标定实验中存在使1H旋转$4 \pi$角度(同时13C旋转$\pi$角度)的脉冲作用时间点.该点在z轴标定实验拟合结果中对应的信号强度处在第一个极小值处,根据图5(c)中所示标定结果,选择对应的脉冲作用时间(0.25 ms)作为$4 \pi_{\mathrm{H}}\left(\pi_{\mathrm{C}}\right)$脉冲对应的脉冲作用时间,同理可由x轴标定结果得到对应的$4 \pi_{\mathrm{H}}\left(\pi_{\mathrm{C}}\right)$脉冲作用时间点(0.26 ms),因为将脉冲作用时间作为实验控制量,在得到$4 \pi_{\mathrm{H}}\left(\pi_{\mathrm{C}}\right)$脉冲对应的脉冲作用时间后,即可得到$2 \pi_{\mathrm{H}}\left(1 / 2 \pi_{\mathrm{C}}\right)$对应的脉冲作用时间,以此可以确定实验设计方案中的各部分脉冲作用时间.

另外,根据图8(b)脉冲设计可见,13C自旋选择性实验与1H自旋选择性实验相比,除考虑$4 \pi_{\mathrm{H}}\left(\pi_{\mathrm{C}}\right)$脉冲作用时间点的选取之外,还涉及到负向脉冲磁场的施加.实验开始前,通过采集卡AO输出对x轴脉冲进行正向脉冲与负向脉冲的实际标定测试,结果未表现出二者的信号强度变化规律存在明显差异.

在此基础上,根据图8(a)、(b)所示的组合脉冲序列分别开展针对1H和13C的一系列不同翻转角度(θ)的单自旋选择性脉冲操控实验,其中θ的变化以脉冲作用时间为依据,固定脉冲幅值(0.4 V),有助于提高脉冲作用的稳定性.对得到的J-耦合谱的谱峰强度进行测定,即可得到对应的单自旋选择性操控下的NMR信号强度变化情况,实验结果如图9所示.

图9

图9   改进型脉冲序列作用下单自旋选择性操控实验结果. (a) 1H单自旋操控信号;(b) 13C单自旋操控信号

Fig. 9   The results of heteronuclear single-spin independent rotations by modified pulse sequence. (a) The signal of individual nuclear spin rotation for 1H; (b) The signal of individual nuclear spin rotation for 13C


图9中可以看出,脉冲序列的改进对于脉冲的作用精度有较明显的提高,根据各自实验结果的拟合R2对比可看出实验结果的改进情况,其中图7中各自的R2值为0.187 7(1H)及0.859(13C),而图9中对应的拟合R2值为0.689 3(1H)及0.899 8(13C).但与此同时,也可以看出仍然存在实验结果与预期结果之间的偏差,对于仍然存在的测量误差,需后续对仪器硬件系统(如脉冲发生、样品输运等)进一步优化提升.此外,由于使用Qu-spin磁力计内置的线圈进行传感器周围磁场的补偿,也会将不均匀磁场作用在NMR样品中,虽然这种干扰相对于预极化场及脉冲场的作用是及其微弱的.针对以上问题,在之后研究中具体的改进方向包括脉冲最优作用时间的计算以及系统整体控制的优化,而对于磁力计内部线圈的干扰问题,可能需要利用外部匀场线圈进行剩磁的补偿,同时为保证磁力计周围磁场的均匀性可能需进行多次循环补偿.

4 结论

基于原子磁力计的零场NMR在获得极窄线宽的同时可实现超高灵敏度探测,是对常规NMR的有效补充.本文搭建了一套可移动的小型化零场NMR波谱仪样机,并以NI控制单元为核心为其设计了一套自动化控制系统,实现了对样品输运、预极化、调控脉冲施加及信号采集与存储的全过程自动准确控制,可用于生物小分子样品的高分辨率J-耦合谱采集.本文以13C标记的甲酸(H-13COOH )作为标定样品,通过测定矩形脉冲(幅值固定)作用下的J-耦合谱峰强度,实现了对于脉冲线圈的精确标定,得出脉冲作用时间与实际脉冲磁场强度之间的定量关系.另外,在直流脉冲对核自旋不具备选择性调控的条件下,运用13C-1H异核自旋体系中二者旋磁比之间的关系进行特定组合脉冲的设计,实现了异核体系下的单自旋选择性操控,为异核多自旋体系的核自旋操控提供了参考.

利益冲突

参考文献

BAHTI A, TELFAH A, LAMBERT J, et al.

Optimal control pulses for subspectral editing in low field NMR

[J]. J Magn Reson, 2021, 328: 106993.

DOI:10.1016/j.jmr.2021.106993      URL     [本文引用: 1]

JOHN W B, TENG WU, JAMES E, et al.

Zero- to ultralow-field nuclear magnetic resonance J-spectroscopy with commercial atomic magnetometers

[J]. J Magn Reson, 2020, 314: 106723.

DOI:10.1016/j.jmr.2020.106723      URL     [本文引用: 2]

TAYLER MICHALE C D, THOMAS T, SJOLANDER TOBIAS F, et al.

Invited review article: instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field

[J]. Rev Sci Instrum, 2017, 88(9): 091101.

DOI:10.1063/1.5003347      URL     [本文引用: 2]

We review experimental techniques in our laboratory for nuclear magnetic resonance (NMR) in zero and ultralow magnetic field (below 0.1 μT) where detection is based on a low-cost, non-cryogenic, spin-exchange relaxation free 87Rb atomic magnetometer. The typical sensitivity is 20-30 fT/Hz1/2 for signal frequencies below 1 kHz and NMR linewidths range from Hz all the way down to tens of mHz. These features enable precision measurements of chemically informative nuclear spin-spin couplings as well as nuclear spin precession in ultralow magnetic fields.

TOBIAS F S, JOHN W B, DMITRY B, et al.

Two-dimensional single- and multiple-quantum correlation spectroscopy in zero-field nuclear magnetic resonance

[J]. J Magn Reson, 2020, 318: 106781.

DOI:10.1016/j.jmr.2020.106781      URL     [本文引用: 1]

ALLRED J C, LYMAN R N, KORNACK T W, et al.

High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation

[J]. Phys Rev Lett, 2002, 89(13): 130801.

DOI:10.1103/PhysRevLett.89.130801      URL     [本文引用: 1]

LEDBETTER M P, THEIS T, BLANCHARD J W, et al.

Near-zero-field nuclear magnetic resonance

[J]. Phys Rev B: Condens, 2011, 107(10): 107601.

[本文引用: 1]

JOHN W B, MICAH P L, THOMAS T, et al.

High-resolution zero-field NMR J-spectroscopy of aromatic compounds

[J]. J Am Chem Soc, 2013, 135(9): 3607-3612.

DOI:10.1021/ja312239v      URL     [本文引用: 1]

LIU G B, LI X F, SUN X P, et al.

Ultralow field NMR spectrometer with an atomic magnetometer near room temperature

[J]. J Magn Reson, 2013, 237: 158-163.

DOI:S1090-7807(13)00263-2      PMID:24225528      [本文引用: 1]

We present a Cs atomic magnetometer with a sensitivity of 150fT/Hz(1/2) operating near room temperature. The nuclear magnetic resonance (NMR) signal of 125μL tap water was detected at an ultralow magnetic field down to 47nT, with the signal-to-noise ratio (SNR) of the NMR signal approaching 50 after eight averages. Relaxivity experiments with a Gd(DTPA) contrast agent in zero field were performed, in order to show the magnetometer's ability to measure spin-lattice relaxation time with high accuracy. This demonstrates the feasibility of an ultralow field NMR spectrometer based on a Cs atomic magnetometer, which has a low working temperature, short data acquisition time and high sensitivity. This kind of NMR spectrometer has great potential in applications such as chemical analysis and magnetic relaxometry detection in ultralow or zero fields. Copyright © 2013 Elsevier Inc. All rights reserved.

JIANG M, ROMAN P F, WU T, et al.

Magnetic gradiometer for the detection of zero- to ultralow-field nuclear magnetic resonance

[J]. Phys Rev Appl, 2019, 11(2): 024005.

DOI:10.1103/PhysRevApplied.11.024005      URL     [本文引用: 1]

JIANG M, WU T, JOHN W B, et al.

Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance

[J]. Sci Adv, 2018, 4(6): 6327.

DOI:10.1126/sciadv.aar6327      PMID:29922714      [本文引用: 4]

Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information-inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for C-13 with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics.

BIAN J, JIANG M, CUI J Y, et al.

Universal quantum control in zero-field nuclear magnetic resonance

[J]. Phys Rev A, 2017, 95(5): 052342.

DOI:10.1103/PhysRevA.95.052342      URL     [本文引用: 4]

JIANG M, BIAN J, LIU X M, et al.

Numerical optimal control of spin systems at zero magnetic field

[J]. Phys Rev A, 2018, 97(6): 062118.

DOI:10.1103/PhysRevA.97.062118      URL     [本文引用: 1]

JI Y L, BIAN J, JIANG M, et al.

Time-optimal control of independent spin-1/2 systems under simultaneous control

[J]. Phys Rev A, 2018, 98(6): 062108.

DOI:10.1103/PhysRevA.98.062108      URL     [本文引用: 1]

JIANG M, JI Y L, LI Q, et al.

Multiparameter quantum metrology using strongly interacting spin systems

[J]. arXiv.org, 2021, DOI: https://doi.org/10.48550/arXiv.2104.00211

[本文引用: 1]

DANILA A B, MICHAEL C D, IRENE M R, et al.

Zero-field nuclear magnetic resonance of chemically exchanging systems

[J]. Nat Commun, 2019, 10: 3002.

DOI:10.1038/s41467-019-10787-9      PMID:31278303      [本文引用: 1]

Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is an emerging tool for precision chemical analysis. In this work, we study dynamic processes and investigate the influence of chemical exchange on ZULF NMR J-spectra. We develop a computational approach that allows quantitative calculation of J-spectra in the presence of chemical exchange and apply it to study aqueous solutions of [N]ammonium (N[Formula: see text]) as a model system. We show that pH-dependent chemical exchange substantially affects the J-spectra and, in some cases, can lead to degradation and complete disappearance of the spectral features. To demonstrate potential applications of ZULF NMR for chemistry and biomedicine, we show a ZULF NMR spectrum of [2-C]pyruvic acid hyperpolarized via dissolution dynamic nuclear polarization (dDNP). We foresee applications of affordable and scalable ZULF NMR coupled with hyperpolarization to study chemical exchange phenomena in vivo and in situations where high-field NMR detection is not possible to implement.

PIOTR P, SZYMON P, DMITRY B, et al.

Zero- to ultralow-field NMR spectroscopy of small biomolecules

[J]. Anal Chem, 2021, 93(6): 3226-3232.

DOI:10.1021/acs.analchem.0c04738      PMID:33448215      [本文引用: 2]

Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical technique used to study chemicals and their transformations. However, high-field NMR spectroscopy necessitates advanced infrastructure, and even cryogen-free benchtop NMR spectrometers cannot be readily assembled from commercially available components. We demonstrate construction of a portable zero-field NMR spectrometer employing a commercially available magnetometer and investigate its applications in analytical chemistry. In particular, -spectra of small representative biomolecules [C]-formic acid, [1-C]-glycine, [2,3-C]-fumarate, and [1-C]-d-glucose were acquired, and an approach relying on the presence of a transverse magnetic field during the detection was investigated for relaxometry purposes. We found that the water relaxation time strongly depends on the concentration of dissolved d-glucose in the range of 1-10 mM suggesting opportunities for indirect assessment of glucose concentration in aqueous solutions. Extending analytical capabilities of zero-field NMR to aqueous solutions of simple biomolecules (amino acids, sugars, and metabolites) and relaxation studies of aqueous solutions of glucose highlights the analytical potential of noninvasive and portable ZULF NMR sensors for applications outside of research laboratories.

SAVUKOV I M, ZOTEV V S, VOLEGOV P L, et al.

MRI with an atomic magnetometer suitable for practical imaging applications

[J]. J Magn Reson, 2009, 199(2): 188-191.

DOI:10.1016/j.jmr.2009.04.012      PMID:19435672      [本文引用: 1]

Conventionally implemented MRI is performed in a strong magnetic field, typically >1T. The high fields, however, can lead to many limitations. To overcome these limitations, ultra-low field (ULF) [or microtesla] MRI systems have been proposed and implemented. To-date such systems rely on low-Tc Superconducting Quantum Interference Devices (SQUIDs) leading to the requirement of cryogens. In this letter, we report ULF-MRI obtained with a non-cryogenic atomic magnetometer. This demonstration creates opportunities for developing inexpensive and widely applicable MRI scanners.

SHENG D, PERRY A R, KRZYZEWSKI S P, et al.

A microfabricated optically-pumped magnetic gradiometer

[J]. Appl Phys Lett, 2017, 110(3): 031106.

DOI:10.1063/1.4974349      URL     [本文引用: 1]

We report on the development of a microfabricated atomic magnetic gradiometer based on optical spectroscopy of alkali atoms in the vapor phase. The gradiometer, which operates in the spin-exchange relaxation free regime, has a length of 60 mm and cross sectional diameter of 12 mm, and consists of two chip-scale atomic magnetometers which are interrogated by a common laser light. The sensor can measure differences in magnetic fields, over a 20 mm baseline, of 10 fT/Hz1/2 at frequencies above 20 Hz. The maximum rejection of magnetic field noise is 1000 at 10 Hz. By use of a set of compensation coils wrapped around the sensor, we also measure the sensor sensitivity at several external bias field strengths up to 150 mG. This device is useful for applications that require both sensitive gradient field information and high common-mode noise cancellation.

SHENG J W, WAN S G, SUN Y F, et al.

Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer

[J]. Rev Sci Instrum, 2017, 88(9): 094304.

DOI:10.1063/1.5001730      URL     [本文引用: 1]

In recent years, substantial progress has been made in developing a new generation of magnetoencephalography (MEG) with a spin-exchange relaxation free (SERF)-based atomic magnetometer (AM). An AM employs alkali atoms to detect weak magnetic fields. A compact AM array with high sensitivity is crucial to the design; however, most proposed compact AMs are potassium (K)- or rubidium (Rb)-based with single beam configurations. In the present study, a pump-probe two beam configuration with a Cesium (Cs)-based AM (Cs-AM) is introduced to detect human neuronal magnetic fields. The length of the vapor cell is 4 mm, which can fully satisfy the need of designing a compact sensor array. Compared with state-of-the-art compact AMs, our new Cs-AM has two advantages. First, it can be operated in a SERF regime, requiring much lower heating temperature, which benefits the sensor with a closer distance to scalp due to ease of thermal insulation and less electric heating noise interference. Second, the two-beam configuration in the design can achieve higher sensitivity. It is free of magnetic modulation, which is necessary in one-beam AMs; however, such modulation may cause other interference in multi-channel circumstances. In the frequency band between 10 Hz and 30 Hz, the noise level of the proposed Cs-AM is approximately 10 f T/Hz1/2, which is comparable with state-of-the-art K- or Rb-based compact AMs. The performance of the Cs-AM was verified by measuring human auditory evoked fields (AEFs) in reference to commercial superconducting quantum interference device (SQUID) channels. By using a Cs-AM, we observed a clear peak in AEFs around 100 ms (M100) with a much larger amplitude compared with that of a SQUID, and the temporal profiles of the two devices were in good agreement. The results indicate the possibility of using the compact Cs-AM for MEG recordings, and the current Cs-AM has the potential to be designed for multi-sensor arrays and gradiometers for future neuroscience studies.

THEIS T, LEDBETTER M P, KERVERN G, et al.

Zero-field NMR enhanced by parahydrogen in reversible exchange

[J]. J Am Chem Soc, 2012, 134(9): 3987-3990.

DOI:10.1021/ja2112405      PMID:22332806      [本文引用: 1]

We have recently demonstrated that sensitive and chemically specific NMR spectra can be recorded in the absence of a magnetic field using hydrogenative parahydrogen induced polarization (PHIP) (1-3) and detection with an optical atomic magnetometer. Here, we show that non-hydrogenative parahydrogen-induced polarization (4-6) (NH-PHIP) can also dramatically enhance the sensitivity of zero-field NMR. We demonstrate the detection of pyridine, at concentrations as low as 6 mM in a sample volume of 250 μL, with sufficient sensitivity to resolve all identifying spectral features, as supported by numerical simulations. Because the NH-PHIP mechanism is nonreactive, operates in situ, and eliminates the need for a prepolarizing magnet, its combination with optical atomic magnetometry will greatly broaden the analytical capabilities of zero-field and low-field NMR.© 2012 American Chemical Society

CI J, YANG X, XIN J X, et al.

Preparation and lifetime studies of the singlet state of five spins in hexene molecules used to guide the preservation of the parahydrogen-induced nuclear polarization state

[J]. Chinese J Magn Reson, 2023, 40(1):30-38.

[本文引用: 1]

慈杰, 杨雪, 辛家祥, .

用于指导仲氢诱导核极化状态保存的己烯分子中五自旋的单重态制备和寿命研究

[J]. 波谱学杂志, 2023, 40(1): 30-38.

[本文引用: 1]

BODENSTEDT S, MITCHELL M W, TAYLER M C D.

Fast-field-cycling ultralow-field nuclear magnetic relaxation dispersion

[J]. Nat Commun, 2021, 12: 4041.

DOI:10.1038/s41467-021-24248-9      PMID:34193862      [本文引用: 1]

Optically pumped magnetometers (OPMs) based on alkali-atom vapors are ultra-sensitive devices for dc and low-frequency ac magnetic measurements. Here, in combination with fast-field-cycling hardware and high-resolution spectroscopic detection, we demonstrate applicability of OPMs in quantifying nuclear magnetic relaxation phenomena. Relaxation rate dispersion across the nT to mT field range enables quantitative investigation of extremely slow molecular motion correlations in the liquid state, with time constants > 1 ms, and insight into the corresponding relaxation mechanisms. The 10-20 fT/[Formula: see text] sensitivity of an OPM between 10 Hz and 5.5 kHz H Larmor frequency suffices to detect magnetic resonance signals from ~ 0.1 mL liquid volumes imbibed in simple mesoporous materials, or inside metal tubing, following nuclear spin prepolarization adjacent to the OPM. High-resolution spectroscopic detection can resolve inter-nucleus spin-spin couplings, further widening the scope of application to chemical systems. Expected limits of the technique regarding measurement of relaxation rates above 100 s are discussed.

DUDARI B B, JAMES E, JOHN W B, et al.

Chemical reaction monitoring using zero-field nuclear magnetic resonance enables study of heterogeneous samples in metal containers

[J]. Angew Chem Int Ed, 2020, 59(39): 17026-17032.

DOI:10.1002/anie.v59.39      URL     [本文引用: 1]

ZHOU Q J, XIANG J F, TANG Y L, et al.

Pure shift proton NMR spectroscopy and its applications

[J]. Chinese J Magn Reson, 2016, 33(3): 502-513.

[本文引用: 1]

周秋菊, 向俊锋, 唐亚林, .

纯位移核磁共振氢谱及其应用

[J]. 波谱学杂志, 2016, 33(3): 502-513.

[本文引用: 1]

CHEN C Q, ZHANG X, GUO Q Q, et al.

Moving wearable magnetoencephalography measurement study based on optically-pumped magnetometer

[J]. Chinese J Magn Reson, 2022, 39(3): 337-344.

[本文引用: 2]

陈春巧, 张欣, 郭清乾, .

基于原子磁力计的穿戴式脑磁图动态测量研究

[J]. 波谱学杂志, 2022, 39(3): 337-344.

[本文引用: 2]

WANG X F, ZHU M H, XIAO K D et al.

Static weak magnetic field measurements based on low-field nuclear magnetic resonance

[J]. J Magn Reson, 2019, 307: 106580.

DOI:10.1016/j.jmr.2019.106580      URL     [本文引用: 1]

BUSSANDRI S, ACOSTA R H, BULJUBASICH L.

Radiofrequency encoded only parahydrogen spectroscopy

[J]. J Magn Reson, 2020, 323: 106894.

DOI:10.1016/j.jmr.2020.106894      URL     [本文引用: 1]

ZHANG S L, CHANG Y, YANG X D.

Optimization of limited amplitude radiofrequency pulse with variance evaluation

[J]. Chinese J Magn Reson, 2015, 32(3):462-469.

[本文引用: 1]

张树林, 常严, 杨晓冬.

方差评估在幅值限制脉冲优化中的应用

[J]. 波谱学杂志, 2015, 32(3): 462-469.

[本文引用: 1]

江敏. 基于高灵敏度原子磁力计的超低场核磁共振研究[D]. 安徽: 中国科学技术大学, 2019.

[本文引用: 1]

BODENSTEDT S, MOLL D, GLOGGLER S, et al.

Decoupling of spin decoherence paths near zero magnetic field

[J]. J Phys Chem Lett, 2022, 13(1): 98-104.

DOI:10.1021/acs.jpclett.1c03714      URL     [本文引用: 1]

TIMOTHY D W C.

High-resolution NMR techniques in organic chemistry

[M]. Elsevier, 2009.

[本文引用: 1]

/