基于深度学习的胰腺黏液性和浆液性囊性肿瘤的多源特征分类模型
徐真顺,袁小涵,黄子珩,邵成伟,武杰,边云

Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning
XU Zhenshun,YUAN Xiaohan,HUANG Ziheng,SHAO Chengwei,WU Jie,BIAN Yun
表3 特征模型在4种分类器中的效能
Table 3 Performance of the feature models in the four classifiers
特征模型 分类器 准确率 召回率 精确率 AUC F1
RAD SVM 0.8077 0.5789 0.8462 0.7592 0.6875
ADAboost 0.8269 0.6842 0.8125 0.7967 0.7429
Random Forest 0.7885 0.6742 0.7222 0.7663 0.6974
Logistic 0.8269 0.6316 0.8571 0.7855 0.7273
DL SVM 0.6731 0.1176 0.5303 0.5595 0.1925
ADAboost 0.7692 0.9000 0.6429 0.8645 0.7500
Random Forest 0.7115 0.7619 0.6154 0.8407 0.6809
Logistic 0.7500 0.2857 0.5714 0.5770 0.3809
RAD_DL SVM 0.8462 0.6111 0.7908 0.8051 0.6894
ADAboost 0.8269 0.7727 0.8095 0.6882 0.7907
Random Forest 0.8077 0.6364 0.8750 0.8051 0.7369
Logistic 0.8462 0.9444 0.7083 0.8441 0.8095
Clinical_RAD_DL SVM 0.8846 0.8235 0.8235 0.8689 0.8235
ADAboost 0.8654 0.8823 0.7500 0.8697 0.8108
Random Forest 0.7692 0.7059 0.6316 0.7529 0.6667
Logistic 0.9231 0.8824 0.8820 0.9126 0.8822