基于深度学习的胰腺黏液性和浆液性囊性肿瘤的多源特征分类模型
|
徐真顺,袁小涵,黄子珩,邵成伟,武杰,边云
|
Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning
|
XU Zhenshun,YUAN Xiaohan,HUANG Ziheng,SHAO Chengwei,WU Jie,BIAN Yun
|
|
表3 特征模型在4种分类器中的效能
|
Table 3 Performance of the feature models in the four classifiers
|
|
特征模型 | 分类器 | 准确率 | 召回率 | 精确率 | AUC | F1 | RAD | SVM | 0.8077 | 0.5789 | 0.8462 | 0.7592 | 0.6875 | ADAboost | 0.8269 | 0.6842 | 0.8125 | 0.7967 | 0.7429 | Random Forest | 0.7885 | 0.6742 | 0.7222 | 0.7663 | 0.6974 | Logistic | 0.8269 | 0.6316 | 0.8571 | 0.7855 | 0.7273 | DL | SVM | 0.6731 | 0.1176 | 0.5303 | 0.5595 | 0.1925 | ADAboost | 0.7692 | 0.9000 | 0.6429 | 0.8645 | 0.7500 | Random Forest | 0.7115 | 0.7619 | 0.6154 | 0.8407 | 0.6809 | Logistic | 0.7500 | 0.2857 | 0.5714 | 0.5770 | 0.3809 | RAD_DL | SVM | 0.8462 | 0.6111 | 0.7908 | 0.8051 | 0.6894 | ADAboost | 0.8269 | 0.7727 | 0.8095 | 0.6882 | 0.7907 | Random Forest | 0.8077 | 0.6364 | 0.8750 | 0.8051 | 0.7369 | Logistic | 0.8462 | 0.9444 | 0.7083 | 0.8441 | 0.8095 | Clinical_RAD_DL | SVM | 0.8846 | 0.8235 | 0.8235 | 0.8689 | 0.8235 | ADAboost | 0.8654 | 0.8823 | 0.7500 | 0.8697 | 0.8108 | Random Forest | 0.7692 | 0.7059 | 0.6316 | 0.7529 | 0.6667 | Logistic | 0.9231 | 0.8824 | 0.8820 | 0.9126 | 0.8822 |
|
|
|