[an error occurred while processing this directive]
基于DBCNet的TOF-MRA中脑动脉树区域自动分割方法
张嘉骏1,鲁宇澄2,鲍奕仿2,李郁欣2,耿辰3,4,#(),胡伏原1,§(),戴亚康1,3,*()
An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet
ZHANG Jiajun1,LU Yucheng2,BAO Yifang2,LI Yuxin2,GENG Chen3,4,#(),HU Fuyuan1,§(),DAI Yakang1,3,*()

图3. DBCNet网络架构图.其中,Dec为网络的解码块,BiA和SC是本研究提出的分支解耦模块和深层特征提取模块.得到BiA模块的最终输出特征图$f_{i}^{\text{C}}$和$f_{i}^{\text{D}}$,其中C和D分别表示定位分支和分割分支,i取1、2、3代表不同的BiA模块

Fig. 3. The architecture diagram of DBCNet network. Where Dec is the decoding block of the network, BiA and SC are the branch decoupling module and deep feature extraction module proposed in this study. The final output feature maps $f_{i}^{\text{C}}$ and $f_{i}^{\text{D}}$ of the BiA module are obtained, where C and D represent the localization branch and the segmentation branch, respectively, and i takes 1, 2 and 3 to represent different BiA modules