基于DBCNet的TOF-MRA中脑动脉树区域自动分割方法
|
张嘉骏,鲁宇澄,鲍奕仿,李郁欣,耿辰,胡伏原,戴亚康
|
An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet
|
ZHANG Jiajun,LU Yucheng,BAO Yifang,LI Yuxin,GENG Chen,HU Fuyuan,DAI Yakang
|
|
表3 利用DBCNet与常见深度学习网络对测试集数据进行分割的性能评估
|
Table 3 Segmentation performance evaluation of each region of the intracranial arterial tree in the testing data set using DBCNet and other common deep learning networks
|
|
| | ACA | BA | ICA | MCA | PCA | VA | 平均 | nnUNet | Dice/% | 52.18±2.29 | 0 | 80.03±5.93 | 57.00±2.15 | 45.00±15.81 | 0 | 26.78±3.91 | HD95/mm | 31.74±8.50 | 30 | 8.29±11.01 | 21.91±14.10 | 27.15±4.08 | 30 | 24.84±3.94 | Modified UNet | Dice/% | 77.89±5.14 | 81.01±7.22 | 89.49±2.67 | 76.26±2.94 | 0 | 0 | 49.90±3.59 | HD95/mm | 6.48±4.48 | 8.49±14.01 | 4.95±10.67 | 7.99±3.32 | 30 | 30 | 14.65±2.69 | VNet | Dice/% | 58.70±22.74 | 73.56±7.79 | 89.46±3.81 | 70.86±4.16 | 72.97±5.66 | 70.04±14.56 | 54.56±8.59 | HD95/mm | 13.56±8.43 | 12.59±14.59 | 5.16±11.03 | 15.76±4.84 | 22.81±6.57 | 14.33±6.69 | 14.04±8.69 | DBCNet | Dice/% | 86.32±4.59 | 81.56±3.54 | 92.52±1.25 | 86.53±3.44 | 81.66±3.15 | 82.92±6.28 | 74.72±3.36 | HD95/mm | 3.30±2.32 | 4.94±2.97 | 1.27±0.87 | 3.64±2.41 | 5.16±3.02 | 5.05±5.85 | 3.89±1.30 | 注:其中加粗表示最优结果.当区域在个别或全部影像中无分割结果时,按照Dice=0且HD95=30 mm计算,30为测试集评估结果中的最大值向上取整得到.
|
|
|