融合注意力机制的多尺度残差Unet的磁共振图像重建
|
李奕洁,杨馨雨,杨晓梅
|
Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism
|
Li Yijie,YANG Xinyu,YANG Xiaomei
|
|
表3 消融实验网络模型的平均性能
|
Table 3 Average performance of networks in ablation experiments
|
|
网络模型 | PSNR | | SSIM | ×2 | ×3 | ×4 | ×2 | ×3 | ×4 | Unet | 32.5193±1.0901 | 31.3347±1.0899 | 30.8267±1.0921 | | 0.7771±0.0761 | 0.6829±0.0770 | 0.6475±0.0769 | Att-Unet | 32.9367±1.1096 | 31.5930±1.2019 | 30.9052±1.1099 | | 0.7777±0.0799 | 0.6887±0.0811 | 0.6485±0.0787 | MRes-Unet | 33.0847±0.9998 | 31.6665±1.0621 | 30.9085±1.2260 | | 0.7849±0.0814 | 0.6959±0.0816 | 0.6445±0.0813 | SAMRes-Unet | 33.1018±1.3921 | 31.6770±1.2998 | 30.9095±1.2975 | | 0.7852±0.0824 | 0.6953±0.0827 | 0.6466±0.0825 | CAMRes-Unet | 33.1115±1.3001 | 31.6801±1.2645 | 30.9106±1.2301 | | 0.7856±0.0831 | 0.6960±0.0829 | 0.6476±0.0833 | AttMRes-Unet | 33.2185±1.2759 | 31.7255±1.1794 | 30.9175±1.2376 | | 0.7862±0.0862 | 0.6972±0.0859 | 0.6497±0.0865 |
|
|
|