融合注意力机制的多尺度残差Unet的磁共振图像重建
|
李奕洁,杨馨雨,杨晓梅
|
Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism
|
Li Yijie,YANG Xinyu,YANG Xiaomei
|
|
表1 5种网络模型重建图像的平均性能
|
Table 1 Average performance of reconstructed images by five network models
|
|
网络模型 | PSNR | | SSIM | ×2 | ×3 | ×4 | ×2 | ×3 | ×4 | PD-net | 32.5438±1.0981 | 30.9821±1.1230 | 30.6958±1.0923 | | 0.7736±0.0812 | 0.6802±0.0800 | 0.6345±0.0813 | Cascade-net | 31.5583±1.1120 | 30.1253±1.096 | 29.8148±1.0220 | | 0.7651±0.0795 | 0.6752±0.0820 | 0.6340±0.0760 | KIKI-net | 30.7728±1.4592 | 28.6321±1.3201 | 29.7129±1.5329 | | 0.7532±0.0821 | 0.6457±0.0832 | 0.6274±0.0846 | DC-WCNN | 32.8576±1.0786 | 30.9972±1.2356 | 30.7214±1.0643 | | 0.7821±0.0831 | 0.6853±0.0801 | 0.6399±0.0842 | AttMRes-Unet | 33.2185±1.2759 | 31.7255±1.1794 | 30.9175±1.2376 | | 0.7862±0.0862 | 0.6972±0.0859 | 0.6497±0.0865 |
|
|
|