融合多重自注意力和可变形卷积的多模态脑胶质瘤分割
|
赵欣,张鑫,李鑫杰,王洪凯
|
Multimodal Glioma Segmentation with Fusion of Multiple Self-attention and Deformable Convolutions
|
ZHAO Xin,ZHANG Xin,LI Xinjie,WANG Hongkai
|
|
表3 添加不同模块的Unet网络在BraTs2019数据集上的分割结果
|
Table 3 Indexes of segmentation results using Unet models adding with different modules on BraTs2019 dataset
|
|
网络 | Dice/% | | Hausdorff_95/mm | | PPV/% | | Sensitivity/% | WT | TC | ET | WT | TC | ET | WT | TC | ET | WT | TC | ET | Unet | 83.24 | 84.57 | 76.84 | | 2.6167 | 1.6551 | 2.7735 | | 85.57 | 85.34 | 78.52 | | 85.94 | 90.58 | 80.55 | Unet+Res | 84.81 | 85.35 | 77.32 | | 2.5977 | 1.6414 | 2.7408 | | 86.06 | 85.95 | 78.64 | | 86.47 | 90.89 | 81.23 | Unet+Res+DCM | 86.67 | 85.57 | 78.23 | | 2.5677 | 1.6143 | 2.4234 | | 87.07 | 86.50 | 78.79 | | 86.55 | 91.24 | 81.92 | Unet+Res+MATM | 86.88 | 87.24 | 79.45 | | 2.5681 | 1.5667 | 2.7588 | | 87.70 | 86.30 | 79.75 | | 87.13 | 92.01 | 82.16 | Unet+Res+DCM+MATM (本文方法) | 88.15 | 87.98 | 80.46 | | 2.5637 | 1.5323 | 2.6623 | | 87.75 | 88.98 | 79.89 | | 88.22 | 92.16 | 83.66 |
|
|
|