融合多重自注意力和可变形卷积的多模态脑胶质瘤分割
|
赵欣,张鑫,李鑫杰,王洪凯
|
Multimodal Glioma Segmentation with Fusion of Multiple Self-attention and Deformable Convolutions
|
ZHAO Xin,ZHANG Xin,LI Xinjie,WANG Hongkai
|
|
表1 BraTs2019数据集上不同网络的分割
|
Table 1 Indexes of segmentation results using different models on BraTs2019 dataset
|
|
网络 | Dice/% | Hausdorff_95 | PPV/% | Sensitivity/% | WT | TC | ET | MV | WT | TC | ET | MV | WT | TC | ET | MV | WT | TC | ET | MV | Unet | 83.24 | 84.57 | 76.84 | 81.55 | 2.6167 | 1.6551 | 2.7735 | 2.3488 | 85.57 | 85.34 | 78.52 | 83.14 | 85.94 | 90.58 | 80.55 | 85.69 | DeepResUnet | 85.00 | 84.80 | 78.74 | 82.85 | 2.5781 | 1.6267 | 2.7588 | 2.3212 | 87.67 | 88.50 | 80.79 | 85.65 | 86.55 | 91.24 | 81.92 | 86.57 | Unet++ | 85.76 | 86.44 | 77.88 | 83.36 | 2.5874 | 1.6902 | 2.7558 | 2.3445 | 86.70 | 86.30 | 79.75 | 84.25 | 87.13 | 92.51 | 82.16 | 87.27 | TransUnet | 86.73 | 86.83 | 79.09 | 84.22 | 2.6562 | 1.5829 | 2.7395 | 2.3262 | 86.57 | 88.39 | 80.06 | 85.00 | 87.87 | 92.34 | 83.34 | 87.85 | 本文方法 | 88.15 | 87.98 | 80.46 | 85.33 | 2.5637 | 1.5323 | 2.6623 | 2.2528 | 87.75 | 88.98 | 79.89 | 85.54 | 88.22 | 92.16 | 83.66 | 88.01 |
|
|
|