基于DenseNet结合迁移学习的胰腺囊性肿瘤分类方法
田慧,武杰,边云,张志伟,邵成伟

Classification of Pancreatic Cystic Tumors Based on DenseNet and Transfer Learning
TIAN Hui,WU Jie,BIAN Yun,ZHANG Zhiwei,SHAO Chengwei
表1 DenseNet161网络结构
Table 1 DenseNet161 network structure
Layers DenseNet161
Convolution 7×7 conv
Pooling 3×3 max pool
Dense Block 1 $\left[ \begin{matrix} 1\times 1\ \text{conv} \\ 3\times 3\ \text{conv} \\ \end{matrix} \right]\times 6$
Transition Layer 1 1×1 conv, 2×2 average pool
Dense Block 2 $\left[ \begin{matrix} 1\times 1\ \text{conv} \\ 3\times 3\ \text{conv} \\ \end{matrix} \right]\times 12$
Transition Layer 2 1×1 conv, 2×2 average pool
Dense Block 3 $\left[ \begin{matrix} 1\times 1\ \text{conv} \\ 3\times 3\ \text{conv} \\ \end{matrix} \right]\times 36$
Transition Layer 3 1×1 conv, 2×2 average pool
Dense Block 4 $\left[ \begin{matrix} 1\times 1\ \text{conv} \\ 3\times 3\ \text{conv} \\ \end{matrix} \right]\times 24$
Classification Layer 7×7 global average pool, fully-connected, softmax