基于DenseNet结合迁移学习的胰腺囊性肿瘤分类方法
|
田慧,武杰,边云,张志伟,邵成伟
|
Classification of Pancreatic Cystic Tumors Based on DenseNet and Transfer Learning
|
TIAN Hui,WU Jie,BIAN Yun,ZHANG Zhiwei,SHAO Chengwei
|
|
表1 DenseNet161网络结构
|
Table 1 DenseNet161 network structure
|
|
Layers | DenseNet161 | Convolution | 7×7 conv | Pooling | 3×3 max pool | Dense Block 1 | [1×1 conv3×3 conv]×6 | Transition Layer 1 | 1×1 conv, 2×2 average pool | Dense Block 2 | [1×1 conv3×3 conv]×12 | Transition Layer 2 | 1×1 conv, 2×2 average pool | Dense Block 3 | [1×1 conv3×3 conv]×36 | Transition Layer 3 | 1×1 conv, 2×2 average pool | Dense Block 4 | [1×1 conv3×3 conv]×24 | Classification Layer | 7×7 global average pool, fully-connected, softmax |
|
|
|