生成对抗网络在医学图像转换领域的应用
常晓,蔡昕,杨光,聂生东

Applications of Generative Adversarial Networks in Medical Image Translation
Xiao CHANG,Xin CAI,Guang YANG,Sheng-dong NIE
表1 基于GAN的医学图像转换研究
Table 1 Summary of medical image translation research based on GAN
应用场景 文献 图像类型 网络架构 损失函数 评价标准
含噪图像

去噪图像
[20] CT WGAN LWGAN + Limage +Lperceptual M8, 9, 14
[21] CT Pix2Pix+ LGAN + Lperceptual M5, 6, 8, 9
[22] CT LSGAN, PatchGAN, LAPGAN LGAN + Limage+Lperceptual M7, 8, 9
[26] MRI WGAN LWGAN + Limage+Lperceptual M8, 9
低分辨图像

高分辨图像
[27] MRI Pix2Pix+ LGAN + Limage M7, 8, 9
[28] MRI DCGAN LGAN + L1 M7, 8, 9, 10, 11
[30] PET CGAN, U-Net LGAN + L1 M1, 7, 8
模态转换 [33] T1→FLAIR CGAN LGAN + Limage M7, 8, 17
[34] T1T2T1→FLAIR CGAN LGAN + Ledge M7, 8, 9
[35] MRI→CT DCGAN LGAN + Limage + Lgradient M7, 8
[37] MRI→CT Pix2Pix+ LGAN M7, 8
[39] MRI→PET CycleGAN LGAN + Limage + Lcycle M15
[40] MRI→PET CGAN LGAN M1, 2, 3
[41] X-ray→CT DCGAN, WGAN LWGAN M1
小样本

大样本
[42] MRI CGAN+PGGAN LWGAN-GP M12
[43] MRI PGGAN LWGAN-GP M12, 13, 16
[44] MRI PGGAN LGAN+Lcycle M8, 9
[45] MRI PGGAN LGAN + LSSIM + L1 M4, 16
[46] MRI CGAN LGAN + L1 + Lseg M17
[47] 病理图像 GAN LGAN M15
[50] X-ray PGGAN LGAN + Limage+Lfrequency M15
[51] ECG Pix2PixHD LGAN+Limage+Lperceptual -