基于全卷积网络的乳腺肿瘤动态增强磁共振图像分割
邱玥,聂生东,魏珑

Segmentation of Breast Tumors Based on Fully Convolutional Network and Dynamic Contrast Enhanced Magnetic Resonance Image
Yue QIU,Sheng-dong NIE,Long WEI
表2 RAU-Net具体细节
Table 2 The details of RAU-Net
结构* 输入 输出
conv 1282*1 1282*64
conv 1282*64 1282*64
max-pooling 1282*64 642*64
RA_block 642* 64 642*64
max-pooling 642*64 322*64
conv 322*64 322*128
conv 322*128 322*128
max-pooling 322*128 162*128
RA_block 162*128 162*128
max-pooling 162*128 82*128
conv 82*256 82*256
conv 82*256 82*256
up-conv 82*256 162*128
merge 162*128, 162*128 162*256
RA_block 162*256 162*256
up-conv 162*256 322*128
merge 322*128, 322*128 322*256
conv 322*256 322*128
conv 322*128 322*128
up-conv 322*128 642*64
merge 642*64, 642*64 642*128
RA_block 642*128 642*128
up-conv 642*128 1282*64
merge 1282*64, 1282*64 1282*128
conv 1282*128 1282*64
conv 1282*64 1282*2
conv 1282*2 1282*1