基于级联网络的膝关节图像分割与模型构建
|
马岩,邢藏菊,肖亮
|
Knee Joint Image Segmentation and Model Construction Based on Cascaded Network
|
Yan MA,Cang-ju XING,Liang XIAO
|
|
表1 对本文所提方法与其它4种对比方法分割结果的评价指标的分析
|
Table 1 Analysis for the segmentation evaluation indicators of the proposed method and 4 comparison methods
|
|
评价指标 | 分割方法 | 统计参数 | 半月板 | 软骨 | 皮质骨 | 松质骨 | 脂肪 | 肌肉 | FPR | U-Net | Mean | 0.0003 | 0.0007 | 0.0054 | 0.0024 | 0.0091 | 0.0135 | Std | 0.0001 | 0.0002 | 0.0013 | 0.0007 | 0.0024 | 0.0033 | U-Net (focal loss) | Mean | 0.0002 | 0.0011 | 0.0093 | 0.0024 | 0.0074 | 0.0133 | Std | 0.0001 | 0.0004 | 0.0019 | 0.0007 | 0.0019 | 0.0033 | U-Net (attention) | Mean | 0.0003 | 0.0010 | 0.0054 | 0.0027 | 0.0105 | 0.0122 | Std | 0.0001 | 0.0003 | 0.0010 | 0.0007 | 0.0026 | 0.0035 | U-Net++ | Mean | 0.0004 | 0.0005 | 0.0054 | 0.0022 | 0.0089 | 0.0169 | Std | 0.0001 | 0.0002 | 0.0010 | 0.0008 | 0.0022 | 0.0038 | 本文所提方法 | Mean | 0.0002 | 0.0013 | 0.0050 | 0.0023 | 0.0064 | 0.0132 | Std | 0.0001 | 0.0004 | 0.0010 | 0.0008 | 0.0015 | 0.0035 | | | | | | | | | | TPR | U-Net | Mean | 0.6347 | 0.5435 | 0.7550 | 0.9333 | 0.8799 | 0.9372 | Std | 0.1030 | 0.0912 | 0.0583 | 0.0297 | 0.0498 | 0.0264 | U-Net (focal loss) | Mean | 0.7291 | 0.6025 | 0.8053 | 0.9251 | 0.8547 | 0.9333 | Std | 0.0824 | 0.1005 | 0.0466 | 0.0284 | 0.0638 | 0.0242 | U-Net (attention) | Mean | 0.7076 | 0.5773 | 0.7298 | 0.9375 | 0.8792 | 0.9231 | Std | 0.0617 | 0.0794 | 0.0437 | 0.0336 | 0.0604 | 0.0244 | U-Net++ | Mean | 0.6883 | 0.5144 | 0.6800 | 0.9396 | 0.8459 | 0.9349 | Std | 0.0926 | 0.0959 | 0.0494 | 0.0291 | 0.0600 | 0.0185 | 本文所提方法 | Mean | 0.7562 | 0.7291 | 0.7635 | 0.9410 | 0.8803 | 0.9422 | Std | 0.0671 | 0.0793 | 0.0479 | 0.0250 | 0.0630 | 0.0231 | | | | | | | | | | DCC | U-Net | Mean | 0.6755 | 0.5502 | 0.6980 | 0.9292 | 0.8868 | 0.9252 | Std | 0.0718 | 0.0499 | 0.0378 | 0.0272 | 0.0387 | 0.0224 | U-Net (focal loss) | Mean | 0.6884 | 0.5505 | 0.6608 | 0.9310 | 0.8860 | 0.9234 | Std | 0.0520 | 0.0562 | 0.0396 | 0.0244 | 0.0491 | 0.0207 | U-Net (attention) | Mean | 0.6837 | 0.5551 | 0.6866 | 0.9289 | 0.8868 | 0.9232 | Std | 0.0416 | 0.0416 | 0.0347 | 0.0273 | 0.0511 | 0.0235 | U-Net++ | Mean | 0.6389 | 0.5618 | 0.6502 | 0.9296 | 0.8730 | 0.9118 | Std | 0.0568 | 0.0610 | 0.0333 | 0.0310 | 0.0529 | 0.0230 | 本文所提方法 | Mean | 0.7071 | 0.6023 | 0.7083 | 0.9351 | 0.8907 | 0.9312 | Std | 0.0521 | 0.0396 | 0.0293 | 0.0234 | 0.0419 | 0.0176 | JAC | U-Net | Mean | 0.5394 | 0.4092 | 0.5391 | 0.8824 | 0.8102 | 0.8677 | Std | 0.0699 | 0.0491 | 0.0405 | 0.0319 | 0.0596 | 0.0289 | U-Net (focal loss) | Mean | 0.5484 | 0.4107 | 0.5069 | 0.8844 | 0.8055 | 0.8632 | Std | 0.0528 | 0.0462 | 0.0421 | 0.0362 | 0.0698 | 0.0280 | U-Net (attention) | Mean | 0.5418 | 0.4077 | 0.5341 | 0.8772 | 0.8073 | 0.8653 | Std | 0.0414 | 0.0379 | 0.0367 | 0.0337 | 0.0691 | 0.3033 | U-Net++ | Mean | 0.4931 | 0.3296 | 0.4954 | 0.8716 | 0.7851 | 0.8468 | Std | 0.0511 | 0.0471 | 0.0415 | 0.0364 | 0.0699 | 0.0314 | 本文所提方法 | Mean | 0.5610 | 0.4572 | 0.5600 | 0.8896 | 0.8139 | 0.8761 | Std | 0.0525 | 0.0373 | 0.0331 | 0.0300 | 0.0600 | 0.0251 | | | | | | | | | | ASD/mm | U-Net | Mean | 1.3462 | 2.8589 | 1.2567 | 1.1638 | 1.3399 | 2.2038 | Std | 0.7835 | 0.8687 | 0.5117 | 0.4399 | 0.1666 | 0.6693 | U-Net (focal loss) | Mean | 1.3125 | 3.1638 | 1.2982 | 1.1325 | 1.3147 | 2.2202 | Std | 0.6548 | 1.1781 | 0.2242 | 0.3914 | 0.3295 | 0.7109 | U-Net (attention) | Mean | 1.2539 | 2.7799 | 1.2440 | 1.5075 | 1.3017 | 2.4292 | Std | 0.6181 | 0.8609 | 0.4551 | 0.3993 | 0.2916 | 1.3714 | U-Net++ | Mean | 1.6536 | 3.6479 | 1.6531 | 1.7551 | 1.4824 | 2.9900 | Std | 0.6723 | 1.5050 | 1.5734 | 1.0557 | 0.2625 | 1.3447 | 本文所提方法 | Mean | 1.2470 | 2.6555 | 1.0716 | 1.0651 | 1.2412 | 1.9097 | Std | 0.5749 | 0.8258 | 0.3542 | 0.3869 | 0.2607 | 0.5289 |
|
|
|