基于nnU-Net的乳腺DCE-MR图像中乳房和腺体自动分割
|
霍璐 1,2,胡晓欣 3,肖勤 3,顾雅佳 3,褚旭 1,4,姜娈 1,*( )
|
Automatic Segmentation of Breast and Fibroglandular Tissues in DCE-MR Images Based on nnU-Net
|
Lu HUO 1,2,Xiao-xin HU 3,Qin XIAO 3,Ya-jia GU 3,Xu CHU 1,4,Luan JIANG 1,*( )
|
|
图7. 不同乳腺密度类别的乳腺DCE-MR图像分割结果示例.从上至下,依次为乳腺密度类别Ⅰ、类别Ⅱ、类别Ⅲ和类别Ⅳ的代表性样本(Ⅰ-脂肪: < 25%;Ⅱ-分散:25% ~ 50%;Ⅲ-非均匀致密:50% ~ 75%;Ⅳ-致密: > 75%).从左至右,分别为原始图像、乳房分割的金标准、乳房分割结果、腺体(FGT)分割的金标准和腺体分割结果
|
Fig.7. Segmentation examples of four groups with different breast density ratings. From top down: Category I, Category Ⅱ, Category Ⅲ and Category Ⅳ (Ⅰ - fatty: < 25%; Ⅱ - scattered: 25% ~ 50%; Ⅲ - heterogeneously dense: 50% ~ 75%; Ⅳ - dense: > 75%). From left to right: the original image, the ground truth of whole breast, the segmentation mask of whole breast, the ground truth of FGT, and the segmentation mask of FGT
|
|
|
|
|