[1] Ferrari R, Guardigli G, Mele D, et al. Oxidative stress during myocardial ischaemia and heart failure[J]. Curr Pharm Des, 2004, 10: 1 699-1 711.[2] Zweier J L, Flaherty J T, Weisfeldt M L. Direct measurement of free radical generation following reperfusion of ischemic myocardium[J]. Proc Natl Acad Sci USA, 1987, 84: 1 404-1 407.[3] Zweier J L, Kuppusamy P, Williams R, et al. Measurement and characterization of postischemic free radical generation in the isolated perfused heart[J]. J Biol Chem, 1989, 261: 18 890-18 895.[4] Zhao B L, Shen J G, Li M, et al. Synergic effects of NO and oxygen free radicals in ischemia-reperfusion rabbit myocardium[J]. Sci China, 1996, 26: 331-338.[5] Zhao B L, Xin W J, Yang W D, et al. Direct measurement of active oxygen free radicals from ischemia-reperfusion rabbit myocardium[J]. Chin Sci Bull, 1989, 34: 780-787.[6] Cheng S, Zhao B L, Xin W J, et al. Myocadium damage during ischemia-reperfusion of rat heart[J]. Chin Circ, 1990, 5: 222-226.[7] Huang N, Chen Y, Zhao B L, et al. Studies on free radicals generated during ischemia-reperfusion of rat heat[J]. J Chin Med, 1990, 70: 691-694.[8] Zweier J L, Rayburn B K, Flaherty J T, et al. The effect of superoxide dismutatase on free radical concentration in post ischemic myocardium[J]. Circulation, 1986, 74: 371-380.[9] Sanders S P, Zweier J L, Kuppusamy P, et al. Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport[J]. J Clin Invest, 1993, 91: 46-52.[10] Zweier J L, Kuppusamy P. In vivo EPR spectroscopy of free radicals in the heart[J]. Environ Health Persp, 1994, 102(Suppl 10): 45-51.[11] Kuppusamy P, Chzhan M, Vij K, et al. Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation[J]. Proc Natl Acad Sci USA, 1994, 91: 3 388-3 392.[12] Zhao B L, Shen J G, Li M, et al. Scavenging effect of Chinonin on NO and oxygen free radicals generated from ischemia reperfusion myocadium[J]. Biachem Biophys Acta, 1996, 1 317: 131-137.[13] Afanas'ev I B. On mechanism of superoxide signaling under physiological and pathophysiological conditions[J]. Med Hypotheses, 2005, 64: 127-129.[14] Linnane A W, Kios M, Vitetta L. The essential requirement for superoxide radical and nitric oxide formation for normal physiological function and healthy aging[J]. Mitochondrion, 2007, 7: 1-5.[15] Zhao B L, Jiang W, Zhao Y, et al. Scavenging effect of salvia miltiorriza on free radicals and its protection for myocardial mitochondrial membrane from ischemia-reperfusion injury[J]. Biochem Mol Biol Intern, 1996, 38: 1 171-1 182.[16] Shen J G, Wang J, Zhao B L, et al. Effects of EGb-761 on nitric oxide, oxygen free radicals, myocardial damage and arrhythmias in ischemia-reperfusion injury in vivo[J]. Biochim Biophys Acta, 1998, 1406: 228-236.[17] Zou X L, Wan Q, Li M F, et al. Scavenging effect of green tea polyphenols on oxygen free radicals generated from ischemia-reperfused myocardium[J]. Chinese J Magn Reson, 1995, 12(3): 237-244.[18] Shen J G, Guo X S, Jiang B, et al. Chinonin, a novel drug against cardiomyocyte apoptosis induced by hypoxia and reoxygenation[J]. Biochim Biophys Acta, 2000, 1500: 217-226.[19] Shen J G, Li M, Xin W J, et al. Effects of Chinonin on nitric oxide free radical, myocardial damage and arrhythmia in ischemia-reperfusion injury in vivo[J]. Appl Magn Reson, 2000, 19: 9-19.[20] Zhao B L, Zhou W A, Ni Y C, et al. Kinetic scavenging effects of chinonin on NO and oxygen free radicals generated from ischemia reperfusion myocardium and its protection effects on the myocardium[J]. Res Chem Intermed, 2000, 26: 747-762.[21] Zhao B L, Shen J G, Li M, et al. Study on NO free radicals generated from ischemia-reperfused heart and macrophage[J]. Chinese J Magn Reson, 1997, 14(1): 99-106.[22] Zhao B L, Shen J G, Tang C, et al. Analysis of EPR spectrum about NO free radicals trapped by DETCFe2+[J]. Chinese J Magn Reson, 1998, 15(3): 307-311.[23] Zhang D L, Xiong J, Hu J, et al. Improved method to detect nitric oxide in biological syste[J]. Appl Magn Reson, 2001, 20: 345-358.[24] Zhou G Y, Zhao B L, Hou J W, et al. Detection of nitric oxide in tissue by spin trapping EPR spectropy and triacetylglycerol extraction[J]. Biotech Tech, 1999, 13: 507-511.[25] Tredici P D. Ginkgos and people — A thousand years of interactions[J]. Arnoldia, 1991, 51: 2-15.[26] Tosaki A, Droy-Lefaix M T, Pali T, et al. Effects of SOD, catalase, and a novel antiarrhythmic drug, EGB 761, on reperfusion- induced arrhythmias in isolated rat hearts[J]. Free Radic Biol Med, 1993, 14: 361-370.[27] Haramaki N, Aggarwal S, Kawabata T, et al. Effects of natural antioxidant ginkgo biloba extract (EGB 761) on myocardial ischemia-reperfusion injury[J]. Free Radic Biol Med, 1994, 16: 789-794.[28] Shen J G, Zhao B L, Li M F, et al. Inhibitory effects of Ginkgo biloba extract (EGB761) on oxygen free radicals, nitric oxide and myocardial injury in isolated ischemic-reperfusion hearts//Proceedings of the International Symposium onNatural Antioxidants Molecular Mechanisms and Health Effects. Packer L, Traber M G, Xin W, et al. Eds.[C]. Champaign, Illinois: AOCS Press, 1996.[29] DeFeudis F V. Ginkgo biloba extract (EGb 761): pharmacological activities and clinical application[M]. Elsevier Paris: Amsterdam, 1991.[30] Varga E, Bodi A, Ferdinandy P, et al. The protective effect of EGb 761 in isolated ischemic/reperfused rat hearts: a link between cardiac function and nitric oxide production[J]. J Cardiovasc Pharm, 1999, 34: 711-717.[31] Kusmic C, Basta G, Lazzerini G, et al. The effect of Ginkgo biloba in isolated ischemic/reperfused rat heart: a link between vitamin E preservation and prostaglandin biosynthesis[J]. J Cardiovasc Pharm, 2004, 44: 356-362.[32] Furchgott R, Zawadzki J V. The obligatory role of the endothelium in the relaxation of arterial smooth muscle by acetycholine[J]. Nature, 1980, 288: 373-376. [33] Zhao B L, Shen J G, Li M, et al. In: Chinonin Can Scavenging No Free Radicals and Protect the Myocardium Against Ischemia-Reperfusion Injury//Proceedings of the International Symposium on Natural Antioxidants Molecular Mechanisms and Health Effects. Packer L, Ttaber M G, Xin W. Eds.[C]. Champaign, Illinois: AOCS Press, 1996.[34] Zhang D L, Zhao B L. Oral administration of Crataegus extraction protects against ischemia/reperfusion brain damage in the Mongolian gerbils[J]. J Neur Chem, 2004, 90: 211-219.[35] Zhao Y, Zhao B L. The neuroprotective effect of L-theanine and its inhibition on nicotine dependence[J]. Chinese Sci Bull, 2014, 59: 4 014-4 019.[36] Di X, Yan J, Zhao Y, et al. L-theanine protect the APP (Swedish mutation) transgenic SH-SY5Y cell against glutamate-induced excitotoxicity via inhibition of the NMDA receptor pathway[J]. Neuroscience, 2010, 168(3): 778-786.[37] Wu Z F, Zhu Y S, Cao X S, et al. Mitochondrial toxic effects of Aβ through mitofusins in the early pathogenesis of alzheimer’s disease[J]. Mol Neurobiol, 2014, 50: 986-996.[38] Siamwala J H, Dias P M, Majumder S, et al. L-theanine promotes nitric oxide production in endothelial cells through eNOS phosphorylation[J]. J Nutr Biochem, 2013, 24(3): 595-605.[39] Hollenberg N K, Schmitz H, Macdonald I, et al. Cocoa, flavanols and cardiovascular risk[J]. Br J Cardiol, 2004, 11(5): 379-386.[40] Taubert D, Roesen R, Lehmann C, et al. Effects of Low Habitual Cocoa Intake on Blood Pressure and Bioactive Nitric Oxide[J]. A Randomized Controlled Trial JAMA, 2007, 298(1): 49-60.[41] Zhao B L. No free radical,natural antioxidant and cardio-brain-vascular health//The Second International Chinese Symposium on Free Radical Research[C]. Hong Kong: 2014. 38. |