[1] Frahm J, Haase A, Matthaei D. Rapid NMR imaging of dynamic processes using the FLASH technique [J]. Magn Reson Med 1986, 3(2): 321-327.[2] Rauscher A, Sedlacik J, Barth M, et al. Magnetic susceptibility-weighted MR phase imaging of the human brain [J]. AJNR Am J Neuroradiol, 2005, 26(4): 736-742.[3] Duyn J H, van Gelderen P, Li T Q, et al. High-field MRI of brain cortical substructure based on signal phase [J]. Proc Natl Acad Sci USA, 2007, 104(28): 11 796-11 801.[4] Fukunaga M, Li T Q, van Gelderen P, et al. Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast [J]. Proc Natl Acad Sci USA, 2010, 107(8): 3 834-3 839.[5] Grabner G, Dal-Bianco A, Schernthaner M, et al. Analysis of multiple sclerosis lesions using a fusion of 3.0 T FLAIR and 7.0 T SWI phase: FLAIR SWI [J]. J Magn Reson Imag, 2011, 33(3): 543-549.[6] Haacke E M, Makki M, Ge Y, et al. Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging[J]. J Magn Reson Imag, 2009, 29(3): 537-544.[7] Lotfipour A K, Wharton S, Schwarz S T, et al. High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease[J]. J Magn Reson Imag, 2012, 35(1): 48-55.[8] Zhang J, Zhang Y, Wang J, et al. Characterizing iron deposition in Parkinson's disease using susceptibility-weighted imaging: an in vivo MR study [J]. Brain Res, 2010, 1330: 124-130. [9] Zhang W, Sun S G, Jiang Y H, et al. Determination of brain iron content in patients with Parkinson's disease using magnetic susceptibility imaging [J]. Neurosci Bull, 2009, 25(6): 353-360.[10] Zhu W Z, Zhong W D, Wang W, et al. Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease [J]. Radiology, 2009, 253(2): 497-504.[11] Klassen L M, Menon R S. Robust automated shimming technique using arbitrary mapping acquisition parameters (RASTAMAP) [J]. Magn Reson Med, 2004, 51(5): 881-887.[12] Wowk B, McIntyre M C, Saunders J K. k-Space detection and correction of physiological artifacts in fMRI [J]. Magn Reson Med, 1997, 38(6): 1 029-1 034.[13] Henry P G, van de Moortele P F, Giacomini E, et al. Field-frequency locked in vivo proton MRS on a whole-body spectrometer [J]. Magn Reson Med, 1999, 42(4): 636-642.[14] Hu X, Kim S G. Reduction of signal fluctuation in functional MRI using navigator echoes [J]. Magn Reson Med, 1994, 31(5): 495-503.[15] Glover G H, Li T Q, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR [J]. Magn Reson Med, 2000, 44(1): 162-167.[16] Triantafyllou C, Hoge R D, Wald L L. Effect of spatial smoothing on physiological noise in high-resolution fMRI [J]. Neuroimage, 2006, 32(2): 551-557.[17] van Gelderen P, de Zwart J A, Starewicz P, et al. Real-time shimming to compensate for respiration-induced B0 fluctuations [J]. Magn Reson Med, 2007, 57(2): 362-368.[18] Raj D, Paley D P, Anderson A W, et al. A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging [J]. Phys Med Biol, 2000, 45(12): 3 809-3 820.[19] Van de Moortele P F, Pfeuffer J, Glover G H, et al. Respiration-induced B0 fluctuations and their spatial distribution in the human brain at 7 Tesla [J]. Magn Reson Med, 2002, 47(5): 888-895.[20] Ericsson A, Weis J, Hemmingsson A, et al. Measurements of magnetic field variations in the human brain using a 3D-FT multiple gradient echo technique [J]. Magn Reson Med, 1995, 33(2): 171-177.[21] Huang Min(黄敏), Cheng Jun-bo(陈军波), Xiong Qiong(熊琼), et al. Comparison and implementation of commonly-used image reconstruction algorithms in parallel MRI(并行MRI 图像重建算法比较及软件实现) [J]. Chinese J Magn Reson(波谱学杂志), 2011, 28(1): 99-108.[22] Wang Qian-feng(王前锋), Li Jian-qi(李建奇), Wu Dong-mei(吴东梅). Implementation of high resolution diffusion weighted imaging of small animal in clinical MRI system(小动物高分辨扩散加权成像在临床MRI上的实现) [J]. Chinese J Magn Reson(波谱学杂志), 2012, 29(3): 372-378.[23] Jiang Xiao-ping(姜小平), Li Jian-qi(李建奇), Fan Ming-xia(范明霞). Line-scan diffusion tensor imaging on low field strenth MRI scanner(低场MRI 系统中线扫描扩散张量成像方法的研究) [J]. Chinese J Magn Reson(波谱学杂志), 2008, 25(4): 470-477.[24] Chen Wei-bo(陈伟波), Li Jian-qi(李建奇), Jiang Xiao-ping(姜小平). Implementation of self-navigated motion correction fast spin echo technique at Low field MRI system(自导航快速自旋回波在低场MRI 上的实现) [J]. Chinese J Magn Reson(波谱学杂志), 2009, 26(2): 197-205.[25] Peeters J M, Fuderer M. SENSE with improved tolerance to inaccuracies in coil sensitivity maps [J]. Magn Reson Med, 2013, 69(6): 1 665-1 669.[26] Yao B, Li T Q, Gelderen P, et al. Susceptibility contrast in high field MRI of human brain as a function of tissue iron content [J]. Neuroimage, 2009, 44(4): 1 259-1 266.[27] Denk C, Rauscher A. Susceptibility weighted imaging with multiple echoes [J]. J Magn Reson Imag, 2010, 31(1): 185-191.[28] Gilbert G, Savard G, Bard C, et al. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging [J]. Magn Reson Imag, 2012, 30(5): 722-730.[29] Luo J, Jagadeesan B D, Cross A H, et al. Gradient echo plural contrast imaging-signal model and derived contrasts: T2*, T1, Phase, SWI, T1f, FST2* and T2*-SWI [J]. Neuroimage, 2012, 60(2): 1 073-1 082.[30] Liu T, Surapaneni K, Lou M, et al. Cerebral microbleeds: Burden assessment by using quantitative susceptibility mapping[J]. Radiology, 2012, 262(1): 269-278.[31] Schweser F, Deistung A, Lehr B W, et al. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism? [J]. Neuroimage, 2011, 54(4): 2 789-2 807.[32] Feng W, Neelavalli J, Haacke E M. Catalytic multiecho phase unwrapping scheme (CAMPUS) in multiecho gradient echo imaging: Removing phase wraps on a voxel-by-voxel basis [J]. Magn Reson Med, 2013, 70(1): 117-126. |