[1] |
CHEN X L, LV W, SU Q C, et al. Conversion of lignocellulose studied by nuclear magnetic resonance[J]. Chinese J Magn Reson, 2021, 38(2): 277-290.
|
|
陈晓丽, 吕微, 苏秋成, 等. 核磁共振技术在生物质转化中的应用[J]. 波谱学杂志, 2021, 38(2): 277-290.
|
[2] |
WALTER M G, WARREN E L, MCKONE J R, et al. Solar water splitting cells[J]. Chem Rev, 2010, 110(11): 6446-6473.
doi: 10.1021/cr1002326
pmid: 21062097
|
[3] |
GOH H H, LI C, ZHANG D, et al. Application of choosing by advantages to determine the optimal site for solar power plants[J]. Sci Rep, 2022, 12(1): 1-16.
doi: 10.1038/s41598-021-99269-x
|
[4] |
NOZIK A J, MILLER J. Introduction to solar photon conversion[J]. Chem Rev, 2010, 110(11): 6443-6445.
doi: 10.1021/cr1003419
pmid: 21062096
|
[5] |
MARTINHO F. Challenges for the future of tandem photovoltaics on the path to terawatt levels: a technology review[J]. Energy Environ Sci, 2021, 14(7): 3840-3871.
doi: 10.1039/D1EE00540E
|
[6] |
JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells[J]. Nature, 2021, 592(7854): 381-385.
doi: 10.1038/s41586-021-03406-5
|
[7] |
LIU D T, LUO D Y, IQBAL A N, et al. Strain analysis and engineering in halide perovskite photovoltaics[J]. Nat Mater, 2021, 20(10): 1337-1346.
doi: 10.1038/s41563-021-01097-x
pmid: 34531574
|
[8] |
SELIG O, SADHANALA A, MÜLLER C, et al. Organic cation rotation and immobilization in pure and mixed methylammonium lead-halide perovskites[J]. J Am Chem Soc, 2017, 139(11): 4068-4074.
doi: 10.1021/jacs.6b12239
pmid: 28240902
|
[9] |
LI Z, KLEIN T R, KIM D H, et al. Scalable fabrication of perovskite solar cells[J]. Nat Rev Mater, 2018, 3(4): 1-20.
doi: 10.1038/s41578-018-0013-z
|
[10] |
STRANKS S D, SNAITH H J. Metal-halide perovskites for photovoltaic and light-emitting devices[J]. Nat Nanotech, 2015, 10(5): 391-402.
doi: 10.1038/nnano.2015.90
|
[11] |
SPANOPOULOS I, KE W, STOUMPOS C C, et al. Unraveling the chemical nature of the 3D “hollow” hybrid halide perovskites[J]. J Am Chem Soc, 2018, 140(17): 5728-5742.
doi: 10.1021/jacs.8b01034
|
[12] |
STODDARD R J, RAJAGOPAL A, PALMER R L, et al. Enhancing defect tolerance and phase stability of high-bandgap perovskites via guanidinium alloying[J]. ACS Energy Lett, 2018, 3(6): 1261-1268.
doi: 10.1021/acsenergylett.8b00576
|
[13] |
JARIWALA S, KUMAR R E, EPERON G E, et al. Dimethylammonium addition to halide perovskite precursor increases vertical and lateral heterogeneity[J]. ACS Energy Lett, 2021, 7(1): 204-210.
doi: 10.1021/acsenergylett.1c02302
|
[14] |
SHI Z F, ZHANG Y, CUI C, et al. Symmetrization of the crystal lattice of MAPbI3 boosts the performance and stability of metal-perovskite photodiodes[J]. Adv Mater, 2017, 29(30): 1701656.
doi: 10.1002/adma.201701656
|
[15] |
RAY A, MARTÍN-GARCÍA B, MOLITERNI A, et al. Mixed dimethylammonium/methylammonium lead halide perovskite crystals for improved structural stability and enhanced photodetection[J]. Adv Mater, 2022, 34(7): 2106160.
doi: 10.1002/adma.202106160
|
[16] |
SPIESS H W. Deuteron spin alignment: A probe for studying ultraslow motions in solids and solid polymers[J]. J Chem Phys, 1980, 72(12): 6755-6762.
doi: 10.1063/1.439165
|
[17] |
SIMENAS M, BALCIUNAS S, WILSON J N, et al. Suppression of phase transitions and glass phase signatures in mixed cation halide perovskites[J]. Nat Commun, 2020, 11(1): 1-9.
doi: 10.1038/s41467-019-13993-7
|
[18] |
SIMENAS M, BALČIU̅NAS S, SVIRSKAS S, et al. Phase diagram and cation dynamics of mixed MA1-xFAxPbBr3 hybrid perovskites[J]. Chem Mater, 2021, 33(15): 5926-5934.
doi: 10.1021/acs.chemmater.1c00885
|
[19] |
ANELLI C, CHIEROTTI M R, BORDIGNON S, et al. Investigation of dimethylammonium solubility in MAPbBr3 hybrid perovskite: synthesis, crystal structure, and optical properties[J]. Inorg Chem, 2018, 58(1): 944-949.
doi: 10.1021/acs.inorgchem.8b03072
|
[20] |
LI L Q, LIU X, ZHANG H J, et al. Enhanced X-ray sensitivity of MAPbBr3 detector by tailoring the interface-states density[J]. ACS Appl Mater Interfaces, 2019, 11(7): 7522-7528.
doi: 10.1021/acsami.8b18598
|
[21] |
KUBICKI D J, STRANKS S D, GREY C P, et al. NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites[J]. Nat Rev Chem, 2021, 5(9): 624-645.
doi: 10.1038/s41570-021-00309-x
|
[22] |
QIAO W C, LIANG J, DONG W, et al. Illumination-induced changes in methylammonium lead bromine perovskites. An in situ 2H NMR study[J]. J Phys Chem C, 2021, 125(18): 9908-9915.
doi: 10.1021/acs.jpcc.1c01814
|
[23] |
ZHANG W, YE H Y, GRAF R, et al. Tunable and switchable dielectric constant in an amphidynamic crystal[J]. J Am Chem Soc, 2013, 135(14): 5230-5233.
doi: 10.1021/ja3110335
pmid: 23517129
|
[24] |
TOBAR C, CORDOVA R, SOLOMON T, et al. Water dynamics in deuterated gypsum, CaSO4⋅2D2O, investigated by solid state deuterium NMR[J]. J Magn Reson, 2020, 310: 106640.
doi: 10.1016/j.jmr.2019.106640
|
[25] |
TSAI H, ASADPOUR R, BLANCON J C, et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells[J]. Science, 2018, 360(6384): 67-70.
doi: 10.1126/science.aap8671
pmid: 29622649
|