[1] CAI S X, ZHANG H, ZHENG D Y. Preparation of double bond ionic liquid and its catalytic synthesis of biodiesel with oleic acid[J]. Chinese Journal of Biological Chemical Engineering, 2017, 51(2):26-30. 蔡绍雄, 张慧, 郑德勇. 双键型离子液体制备及其催化油酸合成生物柴油的研究[J]. 生物质化学工程, 2017, 51(2):26-30. [2] CHEN Y, MAO S, QIAO T F, et al. Research progress of hydrotalcite composite oxide catalyst for preparation of biodiesel[J]. Portland Bulletin, 2016, 35(1):174-178. 陈颖, 苗双, 乔腾飞, 等. 水滑石类复合氧化物催化制备生物柴油的研究进展[J]. 硅酸盐通报, 2016, 35(1):174-178. [3] YANG T, TAO R S, HUANG P, et al. Progress in preparation of biodiesel by transesterification catalyzed by solid base[J]. Chemical Production and Technology, 2015, 22(1):41-46. 杨涛, 陶荣哨, 黄鹏, 等. 固体碱催化酯交换反应制备生物柴油研究进展[J]. 化工生产与技术, 2015, 22(1):41-46. [4] CHEN G Y, ZHAO P C, CHEN H, et al. pH two step catalytic resin acid containing oil to produce biodiesel[J]. Journal of Solar Energy, 2016, 37(6):1554-1559. 陈冠益, 赵鹏程, 陈鸿, 等. 酸碱树脂两步催化含酸油脂制备生物柴油[J]. 太阳能学报, 2016, 37(6):1554-1559. [5] FU J Y, CHEN L G, LV P M, et al. Free fatty acids esterification for biodiesel production using self-synthesized macroporous cation exchange resin as solid acid catalyst[J]. Fuel, 2015, 154:1-8. [6] LIU F J, WANG L, SUN Q, et al. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers:heterogeneous catalysts that are faster than homogeneous catalysts[J]. J Am Chem Soc, 2012, 134(41):16948-16950. [7] LIU F J, ZHENG A M, NOSHADI I, et al. Design and synthesis of hydrophobic and stable mesoporous polymeric solid acid with ultra strong acid strength and excellent catalytic activities for biomass transformation[J]. Applied Catalysis B:Environmental, 2013, 136-137:193-201. [8] LIU F J, LIU C, KONG W P, et al. Design and synthesis of micro-meso-macroporous polymers with versatile active sites and excellent activities in the production of biofuels and fine chemicals[J]. Green Chem, 2016, 18(24):6536-6544. [9] LIU F J, HUANG K, ZHENG A M, et al. Hydrophobic solid acids and their catalytic applications in green and sustainable chemistry[J]. ACS Catalysis, 2017, 8(1):372-391. [10] XIAN S J, WU X W, ZHAO H S. Progress in research on esterification reactions catalyzed by heteropolyacid[J]. China Science & Technology Panorama Magazine, 2014, 10:263-264. 缐述娟, 武小伟, 赵海生. 杂多酸催化酯化反应的研究进展[J]. 中国科技纵横, 2014, 10:263-264. [11] LI W Y, LIU Y Y, ZHENG H Y, et al. Molecular structure and application of heteropolyacid (salt) catalysts for organic synthesis[J]. Chem Ind Eng Prog, 2010, 29(2):243-249. 李威渊, 刘媛媛, 郑华艳, 等. 杂多酸(盐)催化剂的分子结构及其在有机合成中的应用[J]. 化工进展, 2010, 29(2):243-249. [12] SHU Q, LIU B, SONG S H, et al. Optimization of the tungsten/molybdenum mixed heteropoly acid salt-catalyzed esterification reaction conditions[J]. Nonferrous Metals Science and Engineering, 2014, 5(6):21-27. 舒庆, 刘宝, 宋胜海, 等. 钨钼混合杂多酸盐催化酯化反应条件的优化[J]. 有色金属科学与工程, 2014, 5(6):21-27. [13] ZHU S H, ZHU Y L, GAO X Q, et al. Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids[J]. Bioresource Technol, 2013, 130(1):45-51. [14] BADDAY A S, ABDULAH A Z, LEE K T. Optimization of biodiesel production process from Jatropha oil using supported heteropolyacid catalyst and assisted by ultrasonic energy[J]. Renew Energ, 2013, 50:427-432. [15] MA J D, LI X K, GAO L, et al. Preparation and characterization of SO42-/TiO2 supported phosphotungstic acid solid acid[J]. Chemical Engineers, 2017, 31(3):1-4. 马景东, 李学坤, 高璐, 等. SO42-/TiO2负载磷钨酸型固体酸制备及表征[J]. 化学工程师, 2017, 31(3):1-4. [16] NILESH N, VARSHA B, ANJALI P. Efficient synthesis of biodiesel from waste cooking oil using solid acid catalyst comprising12-tungstosilicic acid and SBA-15[J]. Fuel, 2014, 135:253-261. [17] LUZGIN M V, KAZANTSEV M S, VOLKOVA G G, et al. Solid-state NMR study of the kinetics and mechanism of dimethyl ether carbonylation on cesium salt of 12-tungstophosphoric acid modified with Ag, Pt, and Rh[J]. J Catal, 2013, 308(1):250-257. [18] IZUMI Y, ONO M, OGAWA M, et al. Acidic cesium calts of Keggin-type heteropolytungstic acids as insoluble solid acid catalysts for esterification and hydrolysis reactions[J]. Chem Lett, 1993, 1993(5):825-828. [19] PATHAN S, PATEL A. Solvent free clean selective oxidation of alcohols catalyzed by mono transition metal (Co, Mn, Ni)-substituted Keggin-phosphomolybdates using hydrogen peroxide[J]. Appl Catal A-General, 2013, 459(9):59-64. [20] HAN X X, KUANG Y Y, OUYANG K, et al. Role of lewis acidity over rare earth ion-exchanged heteropoly tungstates during oxidation of alcohol[J]. J Taiwan Inst Chem Eng, 2017, 70:23-31. [21] HAN X X, CHEN K K, DU H, et al. Novel Keggin-type H4PVMo11O40-based ionic liquid catalysts for n-caprylic acid esterification[J]. J Taiwan Inst Chem Eng, 2016, 58:203-209. [22] LENG Y, WANG J, ZHU D R, et al. Heteropolyanion-based ionic liquids:reaction-induced self-separation catalysts for esterification[J]. Angew Chem Int Edit, 2009, 48(1):168-171. [23] LENG Y, WANG J, ZHU D R, et al. Sulfonated organic heteropolyacid salts:recyclable green solid catalysts for esterifications[J]. J Mol Catal A:Chem, 2009, 313(1,2):1-6. [24] LIU J, HUANG X W, ZHAO X P, et al. Preparation of amino acid functionalized heteropoly salts and their catalytic esterification of n-dodecol with acetic acid without solvent[J]. Petroleum Journal (petroleum processing), 2013, 29(3):383-389. 刘静, 黄小文, 赵小平, 等. 氨基酸功能化杂多酸盐的制备及其在无溶剂条件下催化正十二醇与乙酸酯化反应性能[J]. 石油学报(石油加工), 2013, 29(3):383-389. [25] HAN X X, CHEN K K, YAN W, et al. Amino acid-functionalized heteropolyacids as efficient and recyclable catalysts for esterification of palmitic acid to biodiesel[J]. Fuel, 2016, 165:115-122. [26] ZHANG W H, LENG Y, ZHU D R, et al. Phosphotungstic acid salt of triphenyl (3-sulfopropyl) phosphonium:An efficient and reusable solid catalyst for esterification[J]. Catal Commun, 2009, 11:151-154. [27] HU C, HE Q, ZHANG Y H, et al. Synthesis of new types of polyoxometallate pillared anionic clays:31P and 27Al MAS NMR study of the orientation of intercalated PW11VO404-[J]. Chem Commun, 1996, 2:121-122. [28] ZHANG H W, ZHU B K, XU Y Y. Composite membranes of sulfonated poly (phthalazinone ether ketone) doped with 12-phosphotungstic acid (H3PW12O40) for proton exchange membranes[J]. Solid State Ionics, 2006, 177:1123-1128. [29] LI L X, LIU B Y, WU Z W, et al. Preparation of Keggin-type monolacunary phosphotungstic-ammonium salt and its catalytic performance in ammoximation of cyclohexanone[J]. Chem Eng J, 2015, 280:670-676. [30] ZHENG A M, ZHANG H L, LU X, et al. Theoretical predictions of 31PNMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts[J]. J Phys Chem B, 2008, 112(15):4496-4505. [31] HUANG S J, YANG C Y, ZHENG A M, et al. New insights into keggin-type 12-tungstophosphoric acid from 31P MAS NMR analysis of absorbed trimethylphosphine oxide and DFT calculations[J]. Chem Asian J, 2011, 6(1):137-148. [32] ZHENG A M, HUANG S J, LIU S B, et al. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules[J]. Phys Chem Chem Phys, 2011, 33(13):14889-14901. |