Chinese Journal of Magnetic Resonance ›› 2021, Vol. 38 ›› Issue (4): 552-570.doi: 10.11938/cjmr20212930
Previous Articles Next Articles
Zi-chun WANG1,Jun HUANG2,Yi-jiao JIANG1,*()
Received:
2021-06-30
Online:
2021-12-05
Published:
2021-08-10
Contact:
Yi-jiao JIANG
E-mail:yijiao.jiang@mq.edu.au
Supported by:
CLC Number:
Zi-chun WANG,Jun HUANG,Yi-jiao JIANG. Solid-State NMR Spectroscopy Studies of Enhanced Acidity of Silica-Aluminas Based on Penta-Coordinated Aluminum Species[J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 552-570.
Fig.1
Proposed models for Brønsted acid sites (BASs) in silica-alumina catalysts[7]. (a) BAS consisting of a bridging silanol site bonded to AlIV site (SiOHAl) in zeolites; (b) BAS consisting of PBS interacting with AlIV site; (c) BAS consisting of the flexible coordination between silanol oxygen and neighbouring AlIV. In the latter two cases, the dotted line does not denote a covalent bond but only the close proximity between O and Al atoms
Fig.3
27Al-{1H} D-HMQC 2D spectra of SA/50. (a) SA/50 dehydrated at 723 K for 12 h under vacuum, and (b) after ammonia loading and evacuated at 373 K for 1 h. The spectra were recorded at 18.8 T with a MAS frequency of νR=20 kHz, and τrec=1.0 ms for dehydrated and τrec=900 μs for ammonia-loaded sample, respectively[7]
Fig.4
Optimized structure of AlV species in dehydrated states (a, c and e) and in corresponding rehydrated states (b, d, and f), both calculated at B3LYP/6-31g theoretical level[6]; (g) 17O{27Al} TRAPDOR curves obtained from 17O{1H, 27Al} PRESTO-TRAPDOR experiment were simulated to determine the Al-OH distance, for discriminating the structure of AlV-BASs, corresponding to bridging silanols (black line, O-Al distance of 2 Å) and pseudo-bridging silanols (gray shaded area, O-Al distance range of 3 to 4.4 Å)[41], the corresponding 17O chemical shifts were at -60 and 15 ppm
Table 2
Catalytic data of PG conversion to ethyl mandelate over ASAs and De-Al-HY
Position | Catalyst | ABET/(m2/g) a | YEM/% b | SEM/% b | BAS/(mmol/g) c | LAS/(mmol/g) c | TOFs/h-1 b |
1 | SA/0 | 156 | 0 | 0 | 0 | 0 | 0 |
2 | SA/10 | 377 | 56 | 93 | 0.098 | 0 | 10.2 |
3 | SA/30 | 248 | 67 | 94 | 0.111 | 0 | 10.5 |
4 | SA/50 | 222 | 81 | 95 | 0.134 | 0.003 | 10.5 |
5 | SA/70 | 200 | 97 | 97 | 0.151 | 0.008 | 10.5 |
6 | De-Al-HY | 671 | 81 | 90 | 0.865 | 1.75 | 0.57 |
Fig.9
Catalytic conversion of C3 sugars over ASAs. (a) Catalytic conversion of phenylglyoxal (―) and selectivity to alkyl mandelate (---) as a function of reaction time in MeOH (■), EtOH (●), i-PrOH (▼), n-PrOH (◆), n-BuOH (▲) over SA/70 and reaction in i-PrOH (★) over De-Al-HY[26]. (b) Catalytic glyceraldehyde conversion in ethanol over fresh De-Al-HY and SA/50 and after five recycle uses. Conditions: 1.25 mL of alcohol solution containing 0.4 mol/L phenylglyoxal or glyceraldehyde, 0.05 g catalyst, at 363 K for 6 h with stirring[8]
Table 3
Catalytic performance of ASAs and pertinent reference catalysts in the conversion of glucose to HMF
Temp/K | Time/h | Conversion/% | Yield/% | Ref. | |
Fe-ZSM-5, Si/Al=22.8 | 468 | 2.5 | 90 | 33 | [ |
ASA, Si/Al=90/10 a | 433 | 2 | 45 | 18.8 | [ |
SA/10, Si/Al=90/10 | 433 | 2 | 23 | 6.3 | [ |
SA/50, Si/Al=50/50 | 433 | 2 | 70 (68) b | 38 (37) b | [ |
Fig.10
(a) Correlation between the concentration of Brønsted acidic OH groups (BAS, solid line) and AlV species (dashed line) as a function of the Al content in dehydrated FSP ASAs prepared by using methanol/acetic acid (1:1 by volume, ■) and xylene (★), respectively; (b) Catalytic conversion of PG in ethanol. The PG conversion (CPG), EM selectivity (SEM), reaction rates k, and TOFs were obtained from Ref. [9], respectively. Same reaction conditions as shown in Fig. 9
1 |
CORMA A . Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chem Rev, 1995, 95, 559- 614.
doi: 10.1021/cr00035a006 |
2 |
BUSCA G . Acid catalysts in industrial hydrocarbon chemistry[J]. Chem Rev, 2007, 107, 5366- 5410.
doi: 10.1021/cr068042e |
3 |
LI Y , LI L , YU J H . Applications of zeolites in sustainable chemistry[J]. Chem, 2017, 3, 928- 949.
doi: 10.1016/j.chempr.2017.10.009 |
4 |
WANG Z C , LING H J , SHI J , et al. Acidity enhanced[Al]MCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam[J]. J Catal, 2018, 358, 71- 79.
doi: 10.1016/j.jcat.2017.11.013 |
5 |
WANG Z C , WANG L , ZHOU Z , et al. Benzylation of arenes with benzyl chloride over H-Beta zeolite: Effects from acidity and shape-selectivity[J]. J Phys Chem C, 2017, 121 (28): 15248- 15255.
doi: 10.1021/acs.jpcc.7b04335 |
6 |
WANG Z C , JIANG Y J , YI X F , et al. High population and dispersion of pentacoordinated AlV species on the surface of flame-made amorphous silica-alumina[J]. Sci Bull, 2019, 64 (8): 516- 523.
doi: 10.1016/j.scib.2019.04.002 |
7 |
WANG Z C , JIANG Y J , LAfon O , et al. Brønsted acid sites based on penta-coordinated aluminum species[J]. Nat Commun, 2016, 7, 13820.
doi: 10.1038/ncomms13820 |
8 |
WANG Z C , LI T , JIANG Y , et al. Acidity enhancement through synergy of penta- and tetra-coordinated aluminum species in amorphous silica networks[J]. Nat Commun, 2020, 11, 225.
doi: 10.1038/s41467-019-13907-7 |
9 |
WANG Z C , JIANG Y , JIN F Z , et al. Strongly enhanced acidity and activity of amorphous silica-alumina by formation of pentacoordinated AlV species[J]. J Catal, 2019, 372, 1- 7.
doi: 10.1016/j.jcat.2019.02.007 |
10 |
HUANG J , VAN VEGTEN N , JIANG Y J , et al. Increasing the Brønsted acidity of flame-derived silica/alumina up to zeolitic strength[J]. Angew Chem Int Ed, 2010, 122 (42): 7942- 7947.
doi: 10.1002/ange.201003391 |
11 | GAO X Z , ZHANG Y , WANG X M , et al. Structure and acidity changes in ultra-stable Y zeolites during hydrothermal aging: A solid-state NMR spectroscopy study[J]. Chinese J Magn Reson, 2020, 37 (1): 95- 103. |
高秀枝, 张翊, 王秀梅, 等. NMR研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37 (1): 95- 103. | |
12 |
YANG W J , HUANG J . Solid-state nuclear magnetic resonance spectroscopy-based analysis of local structure, acidic property, and activity for solid acids solid-state nuclear magnetic resonance spectroscopy-based analysis of local structure and acidic property for solid acids[J]. Chinese J Magn Reson,
doi: 10.11938/cjmr20212913 |
杨文杰, 黄骏. 基于固体核磁共振技术的固体酸结构、酸性及活性分析[J]. 波谱学杂志,
doi: 10.11938/cjmr20212913 |
|
13 |
YU Z W , ZHENG A M , WANG Q , et al. Acidity characterization of solid acid catalysts by solid- state NMR spectroscopy: A review on recent progresses[J]. Chinese J Magn Reson, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001 |
喻志武, 郑安民, 王强, 等. 固体核磁共振研究固体酸催化剂酸性进展[J]. 波谱学杂志, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001 |
|
14 |
HUNGER M , FREUDE D , PFEIFER H , et al. High-resolution proton magnetic-resonance and catalytic studies concerning Brønsted centers of amorphous Al2O3-SiO2 solids[J]. Chem Phys Lett, 1983, 100 (1): 29- 33.
doi: 10.1016/0009-2614(83)87256-X |
15 |
CHIZALLET C , RAYBAUD P . Pseudo-bridging silanols as versatile Brønsted acid sites of amorphous aluminosilicate surfaces[J]. Angew Chem Int Ed, 2009, 121 (16): 2935- 2937.
doi: 10.1002/ange.200804580 |
16 |
DUEVEL A , ROMANOVA E , SHARIFI M , et al. Mechanically induced phase transformation of gamma-Al2O3 into alpha-Al2O3. Access to structurally disordered gamma-Al2O3 with a controllable amount of pentacoordinated Al sites[J]. J Phys Chem C, 2011, 115, 22770- 22780.
doi: 10.1021/jp206077r |
17 |
KELLER T C , ARRAS J , HAUS M O , et al. Synthesis-property-performance relationships of amorphous silica-alumina catalysts for the production of methylenedianiline and higher homologues[J]. J Catal, 2016, 344, 757- 767.
doi: 10.1016/j.jcat.2016.08.016 |
18 |
MOUAT A R , GEORGE C , KOBAYASHI T , et al. Highly dispersed SiOx/Al2O3 catalysts illuminate the reactivity of isolated silanol sites[J]. Angew Chem Int Ed, 2015, 54 (45): 13346- 13351.
doi: 10.1002/anie.201505452 |
19 |
VALLA M , ROSSINI A J , CAILLOT M , et al. Atomic description of the interface between silica and alumina in aluminosilicates through dynamic nuclear polarization surface-enhanced NMR spectroscopy and first-principles calculations[J]. J Am Chem Soc, 2015, 137 (33): 10710- 10719.
doi: 10.1021/jacs.5b06134 |
20 |
WISCHERT R , LAURENT P , COPERET C , et al. γ-Alumina: The essential and unexpected role of water for the structure, stability, and reactivity of "defect" sites[J]. J Am Chem Soc, 2012, 134 (35): 14430- 14449.
doi: 10.1021/ja3042383 |
21 |
CHUPAS P J , CHAPMAN K W , HALDER G J . Elucidating the structure of surface acid sites on gamma-Al2O3[J]. J Am Chem Soc, 2011, 133 (22): 8522- 8524.
doi: 10.1021/ja2029574 |
22 |
DENG H , YU Y B , LIU F D , et al. Nature of Ag species on Ag/gamma-Al2O3: A combined experimental and theoretical study[J]. ACS Catal, 2014, 4 (8): 2776- 2784.
doi: 10.1021/cs500248a |
23 |
DUAN H M , YOU R , XU S T , et al. Pentacoordinated Al3+-stabilized active Pd structures on Al2O3-coated palladium catalysts for methane combustion[J]. Angew Chem, 2019, 58 (35): 12043- 12048.
doi: 10.1002/anie.201904883 |
24 |
SHI L , DENG G M , LI W C , et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation[J]. Angew Chem Int Ed, 2015, 54 (47): 13994- 13998.
doi: 10.1002/anie.201507119 |
25 |
WANG Z C , JIANG Y J , STAMPFL C , et al. NMR spectroscopic characterization of flame-made amorphous silica-alumina for cyclohexanol and glyceraldehyde conversion[J]. ChemCatChem, 2020, 12 (1): 287- 293.
doi: 10.1002/cctc.201901728 |
26 |
WANG Z C , JIANG Y J , BAIKER A , et al. Efficient acid-catalyzed conversion of phenylglyoxal to mandelates on flame-derived silica/alumina[J]. ACS Catal, 2013, 3 (7): 1573- 1577.
doi: 10.1021/cs400271e |
27 |
ZHAO Y T , WANG L Z , KOCHUBEI A , et al. Formation and location of Pt single sites induced by pentacoordinated Al species on amorphous silica-alumina[J]. J Phys Chem Lett, 2021, 12 (10): 2536- 2546.
doi: 10.1021/acs.jpclett.1c00139 |
28 |
KIM K D , POKHREL S , WANG Z C , et al. Tailoring high-performance Pd catalysts for chemoselective hydrogenation reactions via optimizing the parameters of the double-flame spray pyrolysis[J]. ACS Catal, 2016, 6 (4): 2372- 2381.
doi: 10.1021/acscatal.6b00396 |
29 |
WANG Z C , POKHREL S , CHEN M M , et al. Palladium-doped silica-alumina catalysts obtained from double-flame FSP for chemoselective hydrogenation of the model aromatic ketone acetophenone[J]. J Catal, 2013, 302, 10- 19.
doi: 10.1016/j.jcat.2013.02.017 |
30 |
KOIRALA R , PRATSINIS S E , BAIKER A . Synthesis of catalytic materials in flames: opportunities and challenges[J]. Chem Soc Rev, 2016, 45, 3053- 3068.
doi: 10.1039/C5CS00011D |
31 |
AMOUREUX J P , FERNANDEZ C , STEUERNAGEL S . Z filtering in MQMAS NMR[J]. J Magn Reson Ser A, 1996, 123, 116- 118.
doi: 10.1006/jmra.1996.0221 |
32 |
WILLIAMS M F , FONFE B , SIEVERS C , et al. Hydrogenation of tetralin on silica-alumina-supported Pt catalysts I. Physicochemical characterization of the catalytic materials[J]. J Catal, 2007, 251 (2): 485- 496.
doi: 10.1016/j.jcat.2007.06.009 |
33 | MACKENZIE K J D , TEMUUJIN J , OKADA K . Thermal decomposition of mechanically activated gibbsite[J]. Thermochimica Acta, 1999, 327 (1, 2): 103- 108. |
34 |
WOUTERS B H , CHEN T H , GROBET P J . Reversible tetrahedral-octahedral framework aluminum transformation in zeolite Y[J]. J Am Chem Soc, 1998, 120 (44): 11419- 11425.
doi: 10.1021/ja982082l |
35 |
OMEGNA A , VAN BOKHOVEN J A , PRINS R . Flexible aluminum coordination in alumino-silicates. Structure of zeolite H-USY and amorphous silica-alumina[J]. J Phys Chem B, 2003, 107, 8854- 8860.
doi: 10.1021/jp030094+ |
36 |
DEWITTE B M , GROBET P J , UYTTERHOEVEN J B . Pentacoordinated aluminum in noncalcined amorphous aluminosilicates, prepared in alkaline and acid-medium[J]. J Phys Chem, 1995, 99 (18): 6961- 6965.
doi: 10.1021/j100018a031 |
37 | HUNGER M . Solid-state NMR spectroscopy[M]. Heidelberg: Springer, 2009. |
38 |
XU J , WANG Q , DENG F . Metal active sites and their catalytic functions in zeolites: Insights from solid-state NMR spectroscopy[J]. Acc Chem Res, 2019, 52 (8): 2179- 2189.
doi: 10.1021/acs.accounts.9b00125 |
39 |
ZHENG A M , LI S H , LIU S B , et al. Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy[J]. Acc Chem Res, 2016, 49 (4): 655- 663.
doi: 10.1021/acs.accounts.6b00007 |
40 |
CHEN K , HORSTMEIER S , NGUYEN V T , et al. Structure and catalytic characterization of a second framework Al(IV) site in zeolite catalysts revealed by NMR at 35.2 T[J]. J Am Chem Soc, 2020, 142 (16): 7514- 7523.
doi: 10.1021/jacs.0c00590 |
41 |
PERRAS F A , WANG Z , KOBAYASHI T , et al. Shedding light on the atomic-scale structure of amorphous silica-alumina and its Brønsted acid sites[J]. Phys Chem Chem Phys, 2019, 21, 19529- 19537.
doi: 10.1039/C9CP04099D |
42 |
YANG W J , WANG Z C , HUANG J , et al. Qualitative and quantitative analysis of acid properties for solid acids by solid-state nuclear magnetic resonance spectroscopy[J]. J Phys Chem C, 2021, 125 (19): 10179- 10197.
doi: 10.1021/acs.jpcc.1c01887 |
43 |
HAW J F , NICHOLAS J B , XU T , et al. Physical organic chemistry of solid acids: Lessons from in situ NMR and theoretical chemistry[J]. Acc Chem Res, 1996, 29 (6): 259- 267.
doi: 10.1021/ar950105k |
44 |
WANG Z C , JIANG Y J , RACHWALIK R , et al. One-step room-temperature synthesis of Al-MCM-41 materials for the catalytic conversion of phenylglyoxal to ethylmandelate[J]. Chemcatchem, 2013, 5 (12): 3889- 3896.
doi: 10.1002/cctc.201300375 |
45 |
WANG Z C , WANG L Z , JIANG Y J , et al. Cooperativity of Brønsted and Lewis acid sites on zeolite for glycerol dehydration[J]. ACS Catal, 2014, 4 (4): 1144- 1147.
doi: 10.1021/cs401225k |
46 |
LI S H , ZHENG A M , SU Y C , et al. Brønsted/Lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study[J]. J Am Chem Soc, 2007, 129 (36): 11161- 11171.
doi: 10.1021/ja072767y |
47 |
STEBBINS J F , XU Z . NMR evidence for excess non-bridging oxygen in an aluminosilicate glass[J]. Nat, 1997, 390, 60- 62.
doi: 10.1038/36312 |
48 |
HUANG J , JIANG Y J , MARTHALA V R R , et al. Regioselective H/D exchange at the side-chain of ethylbenzene on dealuminated zeolite H-Y studied by in situ MAS NMR-UV/Vis spectroscopy[J]. ChemPhysChem, 2008, 9 (8): 1107- 1109.
doi: 10.1002/cphc.200800065 |
49 |
HUANG J , JIANG Y J , MARTHALA V R R , et al. In situ H-1 MAS NMR investigations of the H/D exchange of alkylaromatic hydrocarbons on zeolites H-Y, La, Na-Y, and H-ZSM-5[J]. Microporous Mesoporous Mater, 2007, 99, 86- 90.
doi: 10.1016/j.micromeso.2006.06.041 |
50 |
HUANG J , JIANG Y J , MARTHALA V R R , et al. Insight into the mechanisms of the ethylbenzene disproportionation: Transition state shape selectivity on zeolites[J]. J Am Chem Soc, 2008, 130 (38): 12642- 12644.
doi: 10.1021/ja8042849 |
51 |
BECK L W , XU T , NICHOLAS J B , et al. Kinetic NMR and density-functional study of benzene H/D exchange in zeolites, The most simple aromatic-substitution[J]. J Am Chem Soc, 1995, 117 (46): 11594- 11595.
doi: 10.1021/ja00151a031 |
52 |
ZENG X , WANG Z C , DING J , et al. Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity[J]. J Catal, 2019, 380, 9- 20.
doi: 10.1016/j.jcat.2019.09.035 |
53 |
CORMA A , IBORRA S , VELTY A . Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev, 2007, 107 (6): 2411- 2502.
doi: 10.1021/cr050989d |
54 |
PESCARMONA P P , JANSSEN K P F , DELAET C , et al. Zeolite-catalysed conversion of C(3) sugars to alkyl lactates[J]. Green Chem, 2010, 12 (6): 1083- 1089.
doi: 10.1039/b921284a |
55 |
KIM K D , WANG Z C , JIANG Y J , et al. The cooperative effect of Lewis and Brønsted acid sites on Sn-MCM-41 catalysts for the conversion of 1, 3-dihydroxyacetone to ethyl lactate[J]. Green Chem, 2019, 21 (12): 3383- 3393.
doi: 10.1039/C9GC00820A |
56 |
WANG C , CHU Y Y , XU J , et al. Extra-framework aluminum-assisted initial C−C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5[J]. Angew Chem Int Ed, 2018, 57 (32): 10197- 10201.
doi: 10.1002/anie.201805609 |
57 |
WANG Z C , O'DELL L A , ZENG X , et al. Insight into three-coordinate aluminum species on ethanol-to-olefin conversion over ZSM-5 zeolites[J]. Angew Chem Int Ed, 2019, 131 (50): 18229- 18236.
doi: 10.1002/ange.201910987 |
58 |
DAPSENS P Y , MONDELLI C , PEREZ-RAMIREZ J . Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid[J]. ChemSusChem, 2013, 6 (5): 831- 839.
doi: 10.1002/cssc.201200703 |
59 |
DE CLIPPEL F , DUSSELIER M , VAN ROMPAEY R , et al. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts[J]. J Am Chem Soc, 2012, 134 (24): 10089- 10101.
doi: 10.1021/ja301678w |
60 |
MORENO-RECIO M , SANTAMARIA-GONZALEZ J , MAIRELES-TORRES P . Brønsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural[J]. Chem Eng J, 2016, 303, 22- 30.
doi: 10.1016/j.cej.2016.05.120 |
61 |
XU B , SIEVERS C , LERCHER J A , et al. Strong Brønsted acidity in amorphous silica−aluminas[J]. J Phys Chem C, 2007, 111 (32): 12075- 12079.
doi: 10.1021/jp073677i |
62 |
WANG Z C , JIANG Y J , HUNGER M , et al. Catalytic performance of Brønsted and Lewis acid sites in phenylglyoxal conversion on flame-derived silica-zirconia[J]. ChemCatChem, 2014, 6 (10): 2970- 2975.
doi: 10.1002/cctc.201402397 |
63 |
JONES J , XIONG H F , DELARIVA A T , et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353 (6295): 150- 154.
doi: 10.1126/science.aaf8800 |
64 |
YANG M , LI S , WANG Y , et al. Catalytically active Au-O(OH)(x)-species stabilized by alkali ions on zeolites and mesoporous oxides[J]. Science, 2014, 346 (6216): 1498- 1501.
doi: 10.1126/science.1260526 |
65 |
ZHAO D , ZHUANG Z W , CAO X , et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation[J]. Chem Soc Rev, 2020, 49, 2215- 2264.
doi: 10.1039/C9CS00869A |
66 |
ZUO Z J , LIU S Z , WANG Z C , et al. Dry reforming of methane on single-site Ni/MgO catalysts: Importance of site confinement[J]. ACS Catal, 2018, 8 (10): 9821- 9835.
doi: 10.1021/acscatal.8b02277 |
67 |
WANG A Q , LI J , ZHANG T . Heterogeneous single-atom catalysis[J]. Nat Rev Chem, 2018, 2, 65- 81.
doi: 10.1038/s41570-018-0010-1 |
68 |
CHOI C H , KIM M , KWON H C , et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nat Commun, 2016, 7, 10922.
doi: 10.1038/ncomms10922 |
69 |
QU Y T , LI Z J , CHEN W X , et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms[J]. Nat Catal, 2018, 1, 781- 786.
doi: 10.1038/s41929-018-0146-x |
70 |
KWAK J H , HU J Z , MEI D H , et al. Coordinatively unsaturated Al3+centers as binding sites for active catalyst phases of platinum on gamma-Al2O3[J]. Science, 2009, 325 (5948): 1670- 1673.
doi: 10.1126/science.1176745 |
71 | SPIEKER W A , LIU J , MILLER J T , et al. An EXAFS study of the co-ordination chemistry of hydrogen hexachloroplatinate(IV): 1. Speciation in aqueous solution[J]. Appl Catal A Gen, 2002, 232 (1, 2): 219- 235. |
72 |
ANDREW E R , BRADBURY A , EADES R G . Nuclear magnetic resonance spectra from a crystal rotated at high speed[J]. Nat, 1958, 182, 1659- 1659.
doi: 10.1038/1821659a0 |
73 | STEJSKAL E O , MEMORY J D . High resolution NMR in the solid state[M]. New York: Oxford University Press, 1994. |
74 |
SHELIMOV B , LAMBERT J F , CHE M , et al. Initial steps of the alumina-supported platinum catalyst preparation: A molecular study by 195Pt NMR, UV-Visible, EXAFS, and Raman spectroscopy[J]. J Catal, 1999, 185 (2): 462- 478.
doi: 10.1006/jcat.1999.2527 |
75 |
VALDIVIÉS-CRUZ K , LAM A , ZICOVICH-WILSON C M . Full mechanism of zeolite dealumination in aqueous strong acid medium: Ab initio periodic study on H-Clinoptilolite[J]. J Phys Chem C, 2017, 121 (5): 2652- 2660.
doi: 10.1021/acs.jpcc.6b09794 |
76 | LI S H , ZHENG A M , SU Y C , et al. Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations[J]. Phys Chem Chem Phys, 2010, 12 (5): 3895- 3903. |
77 |
HUNGER M , FREUDE D , PFEIFER H . Magic-angle spinning nuclear-magnetic-resonance studies of water-molecules adsorbed on Brønsted-acid and Lewis-acid sites in zeolites and amorphous silica-aluminas[J]. J Chem Soc Faraday Trans, 1991, 87 (4): 657- 662.
doi: 10.1039/FT9918700657 |
78 |
WANG Q , LI W Z , HUNG I , et al. Mapping the oxygen structure of γ-Al2O3 by high-field solid-state NMR spectroscopy[J]. Nat Commun, 2020, 11, 3620.
doi: 10.1038/s41467-020-17470-4 |
79 |
KIM K D , WANG Z C , TAO Y W , et al. The comparative effect of particle size and support acidity on hydrogenation of aromatic ketones[J]. ChemCatChem, 2019, 11 (19): 4810- 4817.
doi: 10.1002/cctc.201900993 |
[1] | Wen-jie YANG,Jun HUANG. Analysis of Local Structure, Acidic Property and Activity of Solid Acids by Solid-State Nuclear Magnetic Resonance Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 460-473. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||