Chinese Journal of Magnetic Resonance ›› 2021, Vol. 38 ›› Issue (4): 491-502.doi: 10.11938/cjmr20212939
Previous Articles Next Articles
Xin CHEN,Ying-yi FU,Bin YUE,He-yong HE*()
Received:
2021-07-29
Online:
2021-12-05
Published:
2021-09-17
Contact:
He-yong HE
E-mail:heyonghe@fudan.edu.cn
CLC Number:
Xin CHEN,Ying-yi FU,Bin YUE,He-yong HE. Acidity and Basicity of Solid Acid Catalysts Studied by Solid-State NMR[J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 491-502.
Table 1
Acid density of niobium oxides and tantalum oxides with different amounts of adsorbed water[40]
样品 | 吸附水量/ (μmol·g-1) | Brønsted酸密度/ (μmol·g-1) | Lewis酸密度/(μmol·g-1) | 总酸密度/ (μmol·g-1) | ||
强 | 弱 | 总量 | ||||
Nb2O5·nH2O | 0 | 251 | 340 | 549 | 889 | 1140 |
50 | 278 | 309 | 574 | 883 | 1161 | |
100 | 291 | 300 | 584 | 884 | 1175 | |
150 | 303 | 291 | 595 | 886 | 1189 | |
Nb2O5-350 | 0 | 107 | 219 | 375 | 594 | 701 |
50 | 143 | 186 | 409 | 595 | 738 | |
100 | 181 | 149 | 449 | 598 | 779 | |
150 | 182 | 129 | 469 | 598 | 780 | |
Nb2O5-450 | 0 | 52 | 107 | 236 | 343 | 395 |
50 | 54 | 91 | 253 | 344 | 398 | |
100 | 57 | 78 | 268 | 346 | 403 | |
150 | 55 | 67 | 281 | 348 | 403 | |
Ta2O5·nH2O | 0 | 209 | 160 | 332 | 492 | 701 |
50 | 219 | 148 | 345 | 493 | 712 | |
100 | 243 | 122 | 367 | 489 | 732 | |
150 | 251 | 110 | 375 | 485 | 736 | |
Ta2O5-350 | 0 | 89 | 123 | 273 | 396 | 485 |
50 | 110 | 103 | 296 | 399 | 509 | |
100 | 135 | 80 | 316 | 396 | 531 | |
150 | 133 | 65 | 330 | 395 | 528 | |
Ta2O5-450 | 0 | 38 | 57 | 150 | 207 | 245 |
50 | 37 | 42 | 168 | 210 | 247 | |
100 | 39 | 30 | 178 | 208 | 246 | |
150 | 36 | 24 | 185 | 209 | 248 |
Table 2
Acid and base density of the catalysts characterized by the NMR techniques via sole adsorption or co-adsorption of TMP and13CO2[45]
催化剂 | 吸附模式 | 碱密度/(μmol·g-1) | 酸密度/(μmol·g-1) | ||||||
强 | 中等 | 弱 | 总量 | Lewis酸 | Brønsted酸 | 总量 | |||
MgO | 单吸附 | - | 10.5 | - | 10.5 | - | - | - | |
共吸附 | 3.6 | 6.9 | 6.7 | 17.2 | 15.8 | - | 15.8 | ||
ZrO2 | 单吸附 | 0.1 | 8.9 | 6.0 | 15.0 | 108.5 | 2.8 | 111.3 | |
共吸附 | 0.8 | 13.0 | 6.0 | 19.8 | 65.0 | 10.8 | 75.8 | ||
Al2O3 | 单吸附 | - | 4.2 | 36.6 | 40.8 | 220.1 | 25.9 | 246.0 | |
共吸附 | - | 4.2 | 53.6 | 57.8 | 175.9 | 102.3 | 278.2 |
1 | LERCHER J A , GRUNDLING C , EDER-MIRTH G . Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules[J]. Catal Today, 1996, 27 (3): 353- 376. |
2 |
BUSCA G . Spectroscopic characterization of the acid properties of metal oxide catalysts[J]. Catal Today, 1998, 41 (1-3): 191- 206.
doi: 10.1016/S0920-5861(98)00049-2 |
3 |
TOPSØE N Y , PEDERSEN K , DEROUANE E G . Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites[J]. J Catal, 1981, 70 (1): 41- 52.
doi: 10.1016/0021-9517(81)90315-8 |
4 |
HIDALGO C V , ITOH H , HATTORI T , et al. Measurement of the acidity of various zeolites by temperature-programmed desorption of ammonia[J]. J Catal, 1984, 85 (2): 362- 369.
doi: 10.1016/0021-9517(84)90225-2 |
5 |
BROWN S P . Applications of high-resolution 1H solid-state NMR[J]. Solid State Nucl Magn Reson, 2012, 41, 1- 27.
doi: 10.1016/j.ssnmr.2011.11.006 |
6 |
HUNGER M . Brønsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy[J]. Catal Rev Sci Eng, 1997, 39 (4): 345- 393.
doi: 10.1080/01614949708007100 |
7 |
ZHENG A M , HUANG S J , WANG Q , et al. Progress in development and application of solid-state NMR for solid acid catalysis[J]. Chin J Catal, 2013, 34 (3): 436- 491.
doi: 10.1016/S1872-2067(12)60528-2 |
8 | GAO X Z , ZHANG Y , WANG X M , et al. Structure and acidity changes in ultra-stable Y zeolites during hydrothermal aging: A solid state NMR spectroscopy study[J]. Chinese J Magn Reson, 2020, 37 (1): 95- 103. |
高秀枝, 张翊, 王秀梅, 等. NMR研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37 (1): 95- 103. | |
9 |
HILL I M , HANSPAL S , YOUNG Z D , et al. DRIFTS of probe molecules adsorbed on magnesia, zirconia, and hydroxyapatite catalysts[J]. J Phys Chem C, 2015, 119 (17): 9186- 9197.
doi: 10.1021/jp509889j |
10 | XU B Q , YAMAGUCHI T , TANABE K . Acid-base bifunctional behavior of ZrO2 in dual adsorption of CO2 and NH3[J]. Chem Lett, 1988, (10): 1663- 1666. |
11 |
YU Z W , ZHENG A M , WANG Q , et al. Acidity characterization of solid acid catalysts by solid-state NMR spectroscopy: A review on recent progresses[J]. Chinese J Magn Reson, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001 |
喻志武, 郑安民, 王强, 等. 固体核磁共振研究固体酸催化剂酸性进展[J]. 波谱学杂志, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001 |
|
12 |
LI S H , HUANG S J , SHEN W L , et al. Probing the spatial proximities among acid sites in dealuminated H-Y zeolite by solid-state NMR spectroscopy[J]. J Phys Chem C, 2008, 112 (37): 14486- 14494.
doi: 10.1021/jp803494n |
13 |
CHEN K Z , ABDOLRHAMANI M , SHEETS E , et al. Direct detection of multiple acidic proton sites in zeolite HZSM-5[J]. J Am Chem Soc, 2017, 139 (51): 18698- 18704.
doi: 10.1021/jacs.7b10940 |
14 |
YU Z W , ZHENG A M , WANG Q A , et al. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field[J]. Angew Chem Int Ed, 2010, 49 (46): 8657- 8661.
doi: 10.1002/anie.201004007 |
15 |
SU X , XU S T , TIAN P , et al. Investigation of the strong Bronsted acidity in a novel SAPO-type molecular sieve, DNL-6[J]. J Phys Chem C, 2015, 119 (5): 2589- 2596.
doi: 10.1021/jp511670q |
16 |
ZHANG M Z , XU S T , LI J Z , et al. Methanol to hydrocarbons reaction over Hβ zeolites studied by high resolution solid-state NMR spectroscopy: Carbenium ions formation and reaction mechanism[J]. J Catal, 2016, 335, 47- 57.
doi: 10.1016/j.jcat.2015.12.007 |
17 |
WANG Y , ZHUANG J Q , YANG G , et al. Study on the external surface acidity of MCM-22 zeolite: Theoretical calculation and 31P MAS NMR[J]. J Phys Chem B, 2004, 108 (4): 1386- 1391.
doi: 10.1021/jp034989y |
18 |
PENG Y K , YE L , QU J , et al. Trimethylphosphine-assisted surface fingerprinting of metal oxide nanoparticle by 31P solid-state NMR: A zinc oxide case study[J]. J Am Chem Soc, 2016, 138 (7): 2225- 2234.
doi: 10.1021/jacs.5b12080 |
19 |
ZHENG A M , LI S H , LIU S B , et al. Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy[J]. Acc Chem Res, 2016, 49 (4): 655- 663.
doi: 10.1021/acs.accounts.6b00007 |
20 |
LUNSFORD J H , ROTHWELL W P , SHEN W . Acid sites in zeolite Y: A solid-state NMR and infrared study using trimethylphosphine as a probe molecule[J]. J Am Chem Soc, 1985, 107 (6): 1540- 1547.
doi: 10.1021/ja00292a015 |
21 | LUNSFORD J H . Characterization of acidity in zeolites and related oxides using trimethylphosphine as a probe[J]. Top Catal, 1997, 4 (1-2): 91- 98. |
22 | ZHENG A M , LIU S B , DENG F . Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules[J]. Solid State Nucl Magn Reson, 2013, 55, 12- 27. |
23 |
ZHENG A M , LIU S B , DENG F . 31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts[J]. Chem Rev, 2017, 117 (19): 12475- 12531.
doi: 10.1021/acs.chemrev.7b00289 |
24 |
OKUHARA T . Water-tolerant solid acid catalysts[J]. Chem Rev, 2002, 102 (10): 3641- 3666.
doi: 10.1021/cr0103569 |
25 |
USHIKUBO T . Recent topics of research and development of catalysis by niobium and tantalum oxides[J]. Catal Today, 2000, 57 (3-4): 331- 338.
doi: 10.1016/S0920-5861(99)00344-2 |
26 |
IGNATCHENKO A , NEALON D G , DUSHANE R , et al. Interaction of water with titania and zirconia surfaces[J]. J Mol Catal A: Chem, 2006, 256 (1-2): 57- 74.
doi: 10.1016/j.molcata.2006.04.031 |
27 |
NOMA R , NAKAJIMA K , KAMATA K , et al. Formation of 5-(hydroxymethyl)furfural by stepwise dehydration over TiO2 with water-tolerant Lewis acid sites[J]. J Phys Chem C, 2015, 119 (30): 17117- 17125.
doi: 10.1021/acs.jpcc.5b03290 |
28 | SANTOS K M A , ALBUQUERQUE E M , INNOCENTI G , et al. The role of Brønsted and water-tolerant Lewis acid sites in the cascade aqueous-phase reaction of triose to lactic acid[J]. Chem Cat Chem, 2019, 11 (13): 3054- 3063. |
29 | CHEN Z , ZHU G S , WU Y , et al. The promotion effect of transition metals on water-tolerant performance of Cu/SiO2 catalysts in hydrogenation reaction[J]. Chemistry Select, 2019, 4 (48): 14063- 14068. |
30 |
TAKAGAKI A . Rational design of metal oxide solid acids for sugar conversion[J]. Catalysts, 2019, 9 (11): 907.
doi: 10.3390/catal9110907 |
31 |
NAKAJIMA K , BABA Y , NOMA R , et al. Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites[J]. J Am Chem Soc, 2011, 133 (12): 4224- 4227.
doi: 10.1021/ja110482r |
32 | JIMENEZ-MORALES I , MORENO-RECIO M , SANTAMARIA-GONZALEZ J , et al. Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural[J]. Appl Catal B: Environ, 2014, 154, 190- 196. |
33 |
HIRUNSIT P , TOYAO T , SIDDIKI S , et al. Origin of Nb2O5 Lewis acid catalysis for activation of carboxylic acids in the presence of a hard base[J]. Chem Phys Chem, 2018, 19 (21): 2848- 2857.
doi: 10.1002/cphc.201800723 |
34 |
HUANG F M , JIANG T Y , DAI H Y , et al. Transformation of glucose to 5-hydroxymethylfurfural over regenerated cellulose supported Nb2O5·nH2O in aqueous solution[J]. Catal Lett, 2020, 150 (9): 2599- 2606.
doi: 10.1007/s10562-020-03160-9 |
35 |
SKRODCZKY K , ANTUNES M M , HAN X Y , et al. Niobium pentoxide nanomaterials with distorted structures as efficient acid catalysts[J]. Commun Chem, 2019, 2, 129.
doi: 10.1038/s42004-019-0231-3 |
36 |
LEAL G F , LIMA S , GRACA I , et al. Design of nickel supported on water-tolerant Nb2O5 catalysts for the hydrotreating of lignin streams obtained from lignin-first biorefining[J]. iScience, 2019, 15, 467- 488.
doi: 10.1016/j.isci.2019.05.007 |
37 |
GUAN W X , CHEN X , JIN S H , et al. Highly stable Nb2O5-Al2O3 composites supported Pt catalysts for hydrodeoxygenation of diphenyl ether[J]. Ind Eng Chem Res, 2017, 56 (47): 14034- 14042.
doi: 10.1021/acs.iecr.7b03736 |
38 |
HARA M . Heterogeneous Lewis acid catalysts workable in water[J]. Bull Chem Soc Jpn, 2014, 87 (9): 931- 941.
doi: 10.1246/bcsj.20140131 |
39 |
BUNIAZET Z , COUBLE J , MAURY S , et al. Acidity of SiO2-supported metal oxides in the presence of H2O using the AEIR method: 2. Adsorption and coadsorption of NH3 and H2O on TiO2/SiO2 catalysts[J]. Langmui, 2020, 36 (45): 13383- 13395.
doi: 10.1021/acs.langmuir.0c01717 |
40 |
CHEN X , HUANG D F , HE L L , et al. Effect of adsorbed water molecules on the surface acidity of niobium and tantalum oxides studied by MAS NMR[J]. J Phys Chem C, 2021, 125 (17): 9330- 9341.
doi: 10.1021/acs.jpcc.1c02230 |
41 | SHYLESH S , THIEL W R . Bifunctional acid-base cooperativity in heterogeneous catalytic reactions: advances in silica supported organic functional groups[J]. Chem Cat Chem, 2011, 3 (2): 278- 287. |
42 |
WALLING C . The acid strength of surfaces[J]. J Am Chem Soc, 1950, 72 (3): 1164- 1168.
doi: 10.1021/ja01159a025 |
43 |
VARTULI J C , SANTIESTEBAN J G , TRAVERSO P , et al. Characterization of the acid properties of tungsten/zirconia catalysts using adsorption microcalorimetry and n-pentane isomerization activity[J]. J Catal, 1999, 187 (1): 131- 138.
doi: 10.1006/jcat.1999.2595 |
44 |
MOREL J P , MARMIER N , HUREL C , et al. Effect of temperature on the acid-base properties of the alumina surface: Microcalorimetry and acid-base titration experiments[J]. J Colloid Interface Sci, 2006, 298 (2): 773- 779.
doi: 10.1016/j.jcis.2006.01.022 |
45 |
FU Y Y , ZHANG L , YUE B , et al. Simultaneous characterization of solid acidity and basicity of metal oxide catalysts via the solid-state NMR technique[J]. J Phys Chem C, 2018, 122 (42): 24094- 24102.
doi: 10.1021/acs.jpcc.8b06827 |
[1] | Han-di CHEN,Hai-yu KONG,Zhen-chao ZHAO,Wei-ping ZHANG. Exploring the Na+ Locations and Al Distributions in SSZ-39 Zeolite by Solid-State NMR Spectroscopy and DFT Calculations [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 543-551. |
[2] | Wen-jie YANG,Jun HUANG. Analysis of Local Structure, Acidic Property and Activity of Solid Acids by Solid-State Nuclear Magnetic Resonance Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 460-473. |
[3] | Xi-feng XIA,Wen-jing ZHANG,Zhi-ye LIN,Xiao-kang KE,Yu-jie WEN,Fang WANG,Jun-chao CHEN,Lu-ming PENG. Solid-State NMR Studies on the Surface Structure and Properties of Oxide Nanomaterials [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 533-542. |
[4] | Yong-xiang WANG,Qiang WANG,Jun XU,Qing-hua XIA,Feng DENG. The Effects of Ammonium Hexafluorosilicate Post-Treatment on the Acidity of H-ZSM-5 Zeolite Studied by Solid-State NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 514-522. |
[5] | Zi-chun WANG,Jun HUANG,Yi-jiao JIANG. Solid-State NMR Spectroscopy Studies of Enhanced Acidity of Silica-Aluminas Based on Penta-Coordinated Aluminum Species [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 552-570. |
[6] | Yao XIAO,Chang-jiu XIA,Xian-feng YI,Feng-qing LIU,Shang-bin LIU,An-min ZHENG. Progress in the Studies on Sn-Zeolites by Solid-State Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 571-584. |
[7] | Shu-shu GAO,Shu-tao XU,Ying-xu WEI,Zhong-min LIU. Applications of Solid-State Nuclear Magnetic Resonance Spectroscopy in Methanol-to-Olefins Reaction [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 433-447. |
[8] | LEI Zhen-yu, LIANG Xin-miao, LEI You-yi, YANG Li, FENG Ji-wen. Progresses in Solid-State NMR Studies on Carbon Anode Materials for Lithium/Sodium-Ion Batteries [J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 28-39. |
[9] | WEI Ling, ZHANG Shan-min. Suppressing Background 13C NMR Signal From the Probe Head by Phase Incremented Pulses [J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 123-130. |
[10] | LIN Ze-yu, HUO Hua, WANG Qi-hang. Progress in Solid-State NMR Studies of Monoclinic Lithium Vanadium Phosphate [J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 16-27. |
[11] | WANG Jia-xin, FENG Ji-wen, CHEN Jun-fei, WANG Li-ying, LIU Chao-yang. Design and Fabrication of a Magic-Angle Spinning Rotor for Solid-State Nuclear Magnetic Resonance Probe [J]. Chinese Journal of Magnetic Resonance, 2019, 36(4): 446-455. |
[12] | YAN Xiao-jing, HU Bing-wen. Probing 15N-15N Correlations in g-C3N4 Samples with Solid-State NMR SHA+ Pulse Sequence [J]. Chinese Journal of Magnetic Resonance, 2016, 33(3): 361-367. |
[13] | YU Zhi-Wu, ZHENG An-Min, WANG Qiang, HUANG Shing-Jong, DENG Feng, LIU Shang-Bin. Acidity Characterization of Solid Acid Catalysts by Solid- State NMR Spectroscopy: A Review on Recent Progresses [J]. Chinese Journal of Magnetic Resonance, 2010, 27(4): 485-515. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||