[1] Goedert M. Alpha-synuclein and neurodegenerative diseases[J]. Nat Rev Neurosci, 2001, 2(7):492-501.[2] Trojanowski J Q, Lee V M Y. Parkinson's disease and related alpha-synucleinopathies are brain amyloidoses[J]. Ann NY Acad Sci, 2003, 991:107-110.[3] Spillantini M G, Crowther R A, Jakes R, et al. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies[J]. Proc Natl Acad Sci U S A, 1998, 95(11):6469-6473.[4] Ulmer T S, Bax A, Cole N B, et al. Structure and dynamics of micelle-bound human alpha-synuclein[J]. J Biol Chem, 2005, 280(10):9595-9603.[5] Bussell R J, Eliezer D. A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins[J]. J Mol Biol, 2003, 329(4):763-778.[6] El-Agnaf O M A, Bodles A M, Guthrie D J S, et al. The N-terminal region of non-A beta component of Alzheimer's Disease amyloid is responsible for its tendency to assume beta-sheet and aggregate to form fibrils[J]. Eur J Biochem, 1998, 258(1):157-163.[7] Murray I V J, Giasson B I, Quinn S M, et al. Role of alpha-synuclein carboxy-terminus on fibril formation in vitro[J]. Biochemistry, 2003, 42(28):8530-8540.[8] Uversky V N. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation[J]. J Neurochem, 2007, 103(1):17-37.[9] Wood S J, Wypych J, Steavenson S, et al. Alpha-synuclein fibrillogenesis is nucleation-dependent:Implications for the pathogenesis of Parkinson's disease[J]. J Biol Chem, 1999, 274(28):19509-19512.[10] Uversky V N, Li J, Fink A L. Evidence for a partially folded intermediate in alpha-synuclein fibril formation[J]. J Biol Chem, 2001, 276:10737-10744.[11] Fernandez C O, Hoyer W, Zweckstetter M, et al. NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation[J]. Embo J, 2004, 23(10):2039-2046.[12] Bertoncini C W, Jung Y S, Fernandez C O, et al. Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein[J]. Proc Natl Acad Sci U S A, 2005, 102(5):1430-1435.[13] Sung Y H, Eliezer D. Residual structure, backbone dynamics, and interactions within the synuclein family[J]. J Mol Biol, 2007, 372(3):689-707.[14] Dedmon M M, Lindorff-Larsen K, Christodoulou J, et al. Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations[J]. J Am Chem Soc, 2005, 127(2):476-477.[15] Hoyer W, Cherny D, Subramaniam V, et al. Impact of the acidic C-terminal region comprising amino acids 109-140 on alpha-synuclein aggregation in vitro[J]. Biochemistry, 2004, 43(51):16233-16242.[16] Wu K P, Weinstock D S, Narayanan C, et al. Structural reorganization of alpha-synuclein at low pH observed by NMR and REMD simulations[J]. J Mol Biol, 2009, 391(4):784-796.[17] Arnesen T, Van Damme P, Polevoda B, et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans[J]. Proc Natl Acad Sci U S A, 2009, 106(20):8157-8162.[18] Hoyer W, Antony T, Cherny D, et al. Dependence of alpha-synuclein aggregate morphology on solution conditions[J]. J Mol Biol, 2002, 322(2):383-393.[19] Shaw B F, Arthanari H, Narovlyansky M, et al. Neutralizing positive charges at the surface of a protein lowers its rate of amide hydrogen exchange without altering its structure or increasing its thermostability[J]. J Am Chem Soc, 2010, 132(49):17411-17425.[20] Ferrage F, Zoonens M, Warschawski D E, et al. Slow diffusion of macromolecular assemblies by a new pulsed field gradient NMR method[J]. J Am Chem Soc, 2003, 125(9):2541-2545.[21] Khurana R, Coleman C, Ionescu-Zanetti C, et al. Mechanism of thioflavin T binding to amyloid fibrils[J]. J Struct Biol, 2005, 151(3):229-238.[22] Fink A L. The aggregation and fibrillation of alpha-synuclein[J]. Acc Chem Res, 2006, 39(9):628-634. |